Show simple item record

Electron Fluxes at Geostationary Orbit From GOES MAGED Data

dc.contributor.authorSillanpää, Ilkka
dc.contributor.authorGanushkina, N. Yu.
dc.contributor.authorDubyagin, S.
dc.contributor.authorRodriguez, J. V.
dc.date.accessioned2018-02-05T16:39:10Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-12
dc.identifier.citationSillanpää, Ilkka ; Ganushkina, N. Yu.; Dubyagin, S.; Rodriguez, J. V. (2017). "Electron Fluxes at Geostationary Orbit From GOES MAGED Data." Space Weather 15(12): 1602-1614.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/141709
dc.description.abstractElectron behavior in energies below 200 keV at geostationary orbit has significance for satellite operations due to charging effects on spacecraft. Five years of keV energy electron measurements by the geostationary GOES‐13 satellite’s MAGnetospheric Electron Detector (MAGED) instrument has been analyzed. A method for determining flight direction integrated fluxes is presented. The electron fluxes at the geostationary orbit are shown to have significant dependence on solar wind speed and interplanetary magnetic field (IMF) BZ: increased solar wind speed correlates with higher electron fluxes with all magnetic local times while negative IMF BZ increases electron fluxes in the 0 to 12 magnetic local time sector. A predictive empirical model for electron fluxes in the geostationary orbit for energies 40, 75, and 150 keV was constructed and is presented here. The empirical model is dependent on three parameters: magnetic local time, solar wind speed, and IMF BZ.Plain Language SummaryLow‐energy electrons in near‐Earth space can be hazardous to satellites due to charging effects they may cause. Five years of low‐energy electron data from the geostationary orbit of Earth by GOES‐13 satellite was analyzed. The statistical analysis showed that low‐energy electron fluxes were elevated by increased solar wind velocity for any position on the geostationary orbit. In addition, when the magnetic field carried by the solar wind was southward, the electron fluxes were elevated in about half the orbit, while on the other half the fluxes were not affected. A predictive model of low‐energy electrons at geostationary orbit was built based on this data. A new empirical model was constructed to predict electron fluxes in energies between 30 and 200 keV at the different positions at the geostationary orbit. The model uses solar wind speed and magnetic field values to calculate the predicted electron fluxes.Key PointsAn empirical, predictive model function is presented for electron fluxes for energies of 40, 75, and 150 keV at geostationary orbitHigher solar wind speed in general results in electron flux enhancements in energies 30–200 keV at geostationary orbitNegative IMF BZ at midnight to noon results in electron flux enhancements in energies 30–200 keV at geostationary orbit
dc.publisherWiley Periodicals, Inc.
dc.subject.otherempirical model
dc.subject.othermagnetospheric dynamics
dc.subject.otherelectron
dc.subject.othersolar wind driving
dc.subject.otherparticle detector
dc.subject.othergeostationary
dc.titleElectron Fluxes at Geostationary Orbit From GOES MAGED Data
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141709/1/swe20538.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141709/2/swe20538_am.pdf
dc.identifier.doi10.1002/2017SW001698
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceMa, Q., Mourenas, D., Artemyev, A., Li, W., & Thorne, R. M. ( 2016 ). Strong enchancement of 10–100 keV electron fluxes by combined effects of chorus waves and time domain structures. Geophysical Research Letters, 43 ( 10 ), 4683 – 4690. https://doi.org/10.1002/2016GL069125
dc.identifier.citedreferenceHorne, R. B., Thorne, R. M., Shprits, Y. Y., Meredith, N. P., Glauert, S. A., Smith, A. J.,… P. M. E. Decreau ( 2005 ). Wave acceleration of electrons in the Van Allen radiation belts. Nature, 437, 227 – 230. https://doi.org/10.1038/nature03939
dc.identifier.citedreferenceJaynes, A. N., Baker, D. N., Singer, H. J., Rodriguez, J. V., Loto’aniu, T. M., Ali, A. F.,… Reeves, G. D. ( 2015 ). Source and seed populations for relativistic electrons: Their roles in radiation belt changes. Journal of Geophysical Research: Space Physics, 120, 7240 – 7254. https://doi.org/10.1002/2015JA021234
dc.identifier.citedreferenceKellerman, A. C., & Shprits, Y. Y. ( 2012 ). On the influence of solar wind conditions on the outer‐electron radiation belt. Journal of Geophysical Research, 117, A05217. https://doi.org/10.1029/2011JA017253
dc.identifier.citedreferenceKorth, H., & Thomsen, M. F. ( 2001 ). Plasma sheet access to geosynchronous orbit: Generalization to numerical field models. Journal of Geophysical Research, 106 ( A12 ), 29,655 – 29,667. https://doi.org/10.1029/2000JA000373
dc.identifier.citedreferenceKorth, H., Thomsen, M. F., Borovsky, J. E., & McComas, D. J. ( 1999 ). Plasma sheet access to geosynchronous orbit. Journal of Geophysical Research, 104 ( A11 ), 25,047 – 25,061. https://doi.org/10.1029/1999JA900292
dc.identifier.citedreferenceLanzerotti, L. J., LaFleur, K., Maclennan, C. G., & Maurer, D. W. ( 1998 ). Geosynchronous spacecraft charging in January 1997. Geophysical Research Letters, 25 ( 15 ), 2967 – 2970.
dc.identifier.citedreferenceLezniak, T. W., & Winckler, J. R. ( 1970 ). Experimental study of magnetospheric motions and the acceleration of energetic electrons during substorms. Journal of Geophysical Research, 75 ( 34 ), 7075. https://doi.org/10.1029/JA075i034p07075
dc.identifier.citedreferenceLi, W., Thorne, R. M., Ma, Q., Ni, B., Bortnik, J., Baker, D. N.,… Claudepierre, S. G. ( 2014 ). Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm. Journal of Geophysical Research: Space Physics, 119, 4681 – 4693. https://doi.org/10.1002/2014JA019945
dc.identifier.citedreferenceLi, X., Baker, D. N., Temerin, M., Reeves, G., Friedel, R., & Shen, C. ( 2005 ). Energetic electrons, 50 keV to 6 MeV, at geosynchronous orbit: Their responses to solar wind variations. Space Weather, 3, S04001. https://doi.org/10.1029/2004SW000105
dc.identifier.citedreferenceLoto’aniu, T. M., Singer, H. J., Rodriguez, J. V., Green, J., Denig, W., Biesecker, D., & Angelopoulos, V. ( 2015 ). Space weather conditions during the Galaxy 15 spacecraft anomaly. Space Weather, 13, 484 – 502. https://doi.org/10.1002/2015SW001239
dc.identifier.citedreferenceMcComas, D. J., Bame, S. J., Barraclough, B. L., Donart, J. R., Elphic, R. C., Gosling, J. T.,… Thomsen, M. F. ( 1993 ). Magnetospheric plasma analyzer: Initial 3‐spacecraft observations from geosynchronous orbit. Journal of Geophysical Research, 98, 13,453 – 13,465. https://doi.org/10.1029/93JA00726
dc.identifier.citedreferenceOnsager, T. G., Chan, A. A., Fei, Y., Elkington, S. R., Green, J. C., & Singer, H. J. ( 2004 ). The radial gradient of relativistic electrons at geosynchronous orbit. Journal of Geophysical Research, 109, A05221. https://doi.org/10.1029/2003JA010368
dc.identifier.citedreferenceRodriguez, J. V. ( 2014 ). GOES 13‐15 MAGE/PD pitch angles, Algorithm Theoretical Basis Document, version 1.0 NOAA NESDIS NGDC. Retrieved from http://www.ngdc.noaa.gov/stp/satellite/goes/documentation.html., accessed September 10, 2014.
dc.identifier.citedreferenceRowland, W., & Weigel, R. S. ( 2012 ). Intracalibration of particle detectors on a three‐axis stabilized geostationary platform. Space Weather, 10, S11002. https://doi.org/10.1029/2012SW000816
dc.identifier.citedreferenceSicard‐Piet, A., Bourdarie, S., Boscher, D., Friedel, R. H. W., Thomsen, M., Goka, T.,… Koshiishi, H. ( 2008 ). A new international geostationary electron model: IGE‐2006, from 1 keV to 5.2 MeV. Space Weather, 6, S07003. https://doi.org/10.1029/2007SW000368
dc.identifier.citedreferenceShi, Y., Zesta, E., & Lyons, L. R. ( 2009 ). Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements. Annales Geophysicae, 27, 851 – 859. https://doi.org/10.5194/angeo-27-851-2009
dc.identifier.citedreferenceThomsen, M. F., Denton, M. H., Lavraud, B., & Bodeau, M. ( 2007 ). Statistics of plasma fluxes at geosynchronous orbit over more than a full solar cycle. Space Weather, 5, S03004. https://doi.org/10.1029/2006SW00257
dc.identifier.citedreferenceThomsen, M. F., Henderson, M. G., & Jordanova, V. K. ( 2013 ). Statistical properties of the surface‐charging environment at geosynchronous orbit. Space Weather, 11, 237 – 244. https://doi.org/10.1002/swe.20049
dc.identifier.citedreferenceStern, D. ( 1975 ). The motion of a proton in the equatorial magnetosphere. Journal of Geophysical Research, 80 ( 4 ), 595 – 599. https://doi.org/10.1029/JA080i004p00595
dc.identifier.citedreferenceTurner, D. L., Fennell, J. F., Blake, J. B., Clemmons, J., Mauk, B., Cohen, I.,… Burch, J. ( 2016 ). Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission. Geophysical Research Letters, 43, 7785 – 7794. https://doi.org/10.1002/2016GL069691
dc.identifier.citedreferenceTurner, D. L., & Li, X. ( 2008 ). Quantitative forecast of relativistic electron flux at geosynchronous orbit based on low‐energy electron flux. Space Weather, 6, S05005. https://doi.org/10.1029/2007SW000354
dc.identifier.citedreferenceVolland, H. ( 1973 ). A semiempirical model of large‐scale magnetospheric electric fields. Journal of Geophysical Research, 78 ( 1 ), 171 – 180. https://doi.org/10.1029/JA078i001p00171
dc.identifier.citedreferenceÅsnes, A., Stadsnes, J., Friedel, R. W., Østgaard, N., & Thomsen, M. ( 2005 ). Medium energy pitch angle distributions during substorm injected electron clouds. Geophysical Research Letters, 32, L10101. https://doi.org/10.1029/2004GL022008
dc.identifier.citedreferenceBaker, D. N., Higbie, P. R., Hones Jr., E. W., & Belian, R. D. ( 1978 ). High‐resolution energetic particle measurements at 6.6  R E 3. Low‐energy electron anisotropies and short‐term substorm predictions. Journal of Geophysical Research, 83 ( A10 ), 4863 – 4868. https://doi.org/10.1029/JA083iA10p04863
dc.identifier.citedreferenceBame, S. J., McComas, D. J., Thomsen, M. F., Barraclough, B. L., Elphic, R. C., Glore, J. P.,… Wymer, F. J. ( 1993 ). Magnetospheric plasma analyzer for spacecraft with constrained resources. Review of Scientific Instruments, 64, 1026 – 1033. https://doi.org/10.1063/1.1144173
dc.identifier.citedreferenceBirn, J., Thomsen, M. F., Borovsky, J. E., Reeves, G. D., McComas, D. J., Belian, R. D., & Hesse, M. ( 1998 ). Substorm electron injections: Geosynchronous observations and test particle simulations. Journal of Geophysical Research, 103 ( A5 ), 9235 – 9248. https://doi.org/10.1029/97JA02635
dc.identifier.citedreferenceBoyd, A. J., Spence, H. E., Huang, C‐L., Reeves, G. D., Baker, D. N., Turner, D. L.,… Shprits, Y. Y. ( 2016 ). Statistical properties of the radiation belt seed population. Journal of Geophysical Research: Space Physics, 121, 7636 – 7646. https://doi.org/10.1002/2016JA022652
dc.identifier.citedreferenceChen, Y., Reeves, G. D., & Friedel, R. H. W. ( 2007 ). The energization of relativistic electrons in the outer Van Allen radiation belt. Nature Physics, 3, 9. https://doi.org/10.1038/nphys655
dc.identifier.citedreferenceDavis, V. A., Mandell, M. J., & Thomsen, M. F. ( 2008 ). Representation of the measured geosynchronous plasma environment in spacecraft charging calculations. Journal of Geophysical Research, 113, A10204. https://doi.org/10.1029/2008JA013116
dc.identifier.citedreferenceDenton, M. H., Thomsen, M. F., Jordanova, V. K., Henderson, M. G., Borovsky, J. E., Denton, J. S.,… Hartley, D. P. ( 2015 ). An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit. Space Weather, 13, 233 – 249. https://doi.org/10.1002/2015SW001168
dc.identifier.citedreferenceDenton, M. H., & Borovsky, J. E. ( 2008 ). Superposed epoch analysis of high‐speed‐stream effects at geosynchronous orbit: Hot plasma, cold plasma, and the solar wind. Journal of Geophysical Research, 113, A07216. https://doi.org/10.1029/2007JA012998
dc.identifier.citedreferenceDenton, M. H., Thomsen, M. F., Korth, H., Lynch, S., Zhang, J. C., & Liemohn, M. W. ( 2005 ). Bulk plasma properties at geosynchronous orbit. Journal of Geophysical Research, 110, A07223. https://doi.org/10.1029/2004JA010861
dc.identifier.citedreferenceDubyagin, S., Ganushkina, N. Yu., Sillanpää, I., Runov, A., & Angelopoulos, V. ( 2016 ). Solar wind driven variations of electron plasma sheet densities and temperatures beyond geostationary orbit during storm times. Journal of Geophysical Research: Space Physics, 121, 8343 – 8360. https://doi.org/10.1002/2016JA022947
dc.identifier.citedreferenceGanushkina, N. Y., Amariutei, O. A., Shprits, Y. Y., & Liemohn, M. W. ( 2013 ). Transport of the plasma sheet electrons to the geostationary distances. Journal of Geophysical Research: Space Physics, 118, 82 – 98. https://doi.org/10.1029/2012JA017923
dc.identifier.citedreferenceGarrett, H. B. ( 1981 ). The charging of spacecraft surfaces. Reviews of Geophysics, 19 ( 4 ), 577 – 616. https://doi.org/10.1029/RG019i004p00577
dc.identifier.citedreferenceGOES N Series Data Book ( 2010 ). Prepared for NASA pursuant to contract NAS5‐98069, Revision D.
dc.identifier.citedreferenceGreen, J. C., Onsager, T. G., O’Brien, T. P., & Baker, D. N. ( 2004 ). Testing loss mechanisms capable of rapidly depleting relativistic electron flux in the Earth’s outer radiation belt. Journal of Geophysical Research, 109, A12211. https://doi.org/10.1029/2004JA010579
dc.identifier.citedreferenceHanser, F. A. ( 2011 ). EPS/HEPAD calibration and data handbook (Tech. Rep. GOESN‐ENG‐048D). Carlisle, MA: Assurance Technology Corporation. Retrieved from http://www.ngdc.noaa.gov/stp/satellite/goes/documentation.html
dc.identifier.citedreferenceHartley, D. P., Denton, M. H., & Rodriguez, J. V. ( 2014 ). Electron number density, temperature, and energy density at GEO and links to the solar wind: A simple predictive capability. Journal of Geophysical Research: Space Physics, 119, 4556 – 4571. https://doi.org/10.1002/2014JA019779
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.