Show simple item record

Axial Compression of a Thin Elastic Cylinder: Bounds on the Minimum Energy Scaling Law

dc.contributor.authorTobasco, Ian
dc.date.accessioned2018-02-05T16:40:00Z
dc.date.available2019-04-01T15:01:10Zen
dc.date.issued2018-02
dc.identifier.citationTobasco, Ian (2018). "Axial Compression of a Thin Elastic Cylinder: Bounds on the Minimum Energy Scaling Law." Communications on Pure and Applied Mathematics 71(2): 304-355.
dc.identifier.issn0010-3640
dc.identifier.issn1097-0312
dc.identifier.urihttps://hdl.handle.net/2027.42/141757
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier
dc.titleAxial Compression of a Thin Elastic Cylinder: Bounds on the Minimum Energy Scaling Law
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141757/1/cpa21704.pdf
dc.identifier.doi10.1002/cpa.21704
dc.identifier.sourceCommunications on Pure and Applied Mathematics
dc.identifier.citedreferencePaulsen, J. D.; Hohlfeld, E.; King, H.; Huang, J.; Qiu, Z.; Russell, T. P.; Menon, N.; Vella, D.; Davidovitch, B. Curvature‐induced stiffness and the spatial variation of wavelength in wrinkled sheets. Proc. Natl. Acad. Sci. 113 ( 2016 ), no. 5, 1144 ‐ 1149. doi: 10.1073/pnas.1521520113
dc.identifier.citedreferenceHorák, J.; Lord, G. J.; Peletier, M. A. Numerical variational methods applied to cylinder buckling. SIAM J. Sci. Comput. 30 ( 2008 ), no. 3, 1362 – 1386. doi: 10.1137/060675241
dc.identifier.citedreferenceHorton, W. H.; Durham, S. C. Imperfections, a main contributor to scatter in experimental values of buckling load. Int. J. Solids Struct. 1 ( 1965 ), no. 1, 59 ‐ 62. doi: 10.1016/0020-7683(65)90015-6
dc.identifier.citedreferenceHunt, G. W.; Lord, G. J.; Peletier, M. A. Cylindrical shell buckling: a characterization of localization and periodicity. Discrete Contin. Dyn. Syst. Ser. B 3 ( 2003 ), no. 4, 505 ‐ 518. doi: 10.3934/dcdsb.2003.3.505
dc.identifier.citedreferenceJin, W.; Sternberg, P. Energy estimates for the von Kármán model of thin‐film blistering. J. Math. Phys. 42 ( 2001 ), no. 1, 192 ‐ 199. doi: 10.1063/1.1316058
dc.identifier.citedreferenceKohn, R. V.; Müller, S. Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 47 ( 1994 ), no. 4, 405 ‐ 435. doi: 10.1002/cpa.3160470402
dc.identifier.citedreferenceKohn, R. V.; Nguyen, H.‐M. Analysis of a compressed thin film bonded to a compliant substrate: the energy scaling law. J. Nonlinear Sci. 23 ( 2013 ), no. 3, 343 ‐ 362. doi: 10.1007/s00332-012-9154-1
dc.identifier.citedreferenceMoon, M. W.; Jensen, H. M.; Hutchinson, J. W.; Oh, K. H.; Evans, A. G. The characterization of telephone cord buckling of compressed thin films on substrates. J. Mech. Phys. Solids. 50 ( 2002 ), no. 11, 2355 ‐ 2377. doi: 10.1016/S0022-5096(02)00034-0
dc.identifier.citedreferencePipkin, A. C. Relaxed energy densities for large deformations of membranes. IMA J. Appl. Math. 52 ( 1994 ), no. 3, 297 – 308. doi: 10.1093/imamat/52.3.297
dc.identifier.citedreferencePogorelov, A. V. Bendings of surfaces and stability of shells. Translations of Mathematical Monographs, 72. American Mathematical Society, Providence, R.I., 1988.
dc.identifier.citedreferenceRoman, B.; Pocheau, A. Stress defocusing in anisotropic compaction of thin sheets. Phys. Rev. Lett. 108 ( 2012 ), no. 7, 074301. doi: 10.1103/PhysRevLett.108.074301
dc.identifier.citedreferenceSeffen, K. A.; Stott, S. V. Surface texturing through cylinder buckling. J. Appl. Mech. 81 ( 2014 ), no. 6, 061001. doi: 10.1115/1.4026331
dc.identifier.citedreferenceSerfaty, S. Vortices in the Ginzburg‐Landau model of superconductivity. International Congress of Mathematicians. Vol. III, 267 ‐ 290. European Mathematical Society, Zürich, 2006.
dc.identifier.citedreferenceVenkataramani, S. C. Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge. Nonlinearity 17 ( 2004 ), no. 1, 301 ‐ 312. doi: 10.1088/0951-7715/17/1/017
dc.identifier.citedreferenceBedrossian, J.; Kohn, R. V. Blister patterns and energy minimization in compressed thin films on compliant substrates. Comm. Pure Appl. Math. 68 ( 2015 ), no. 3, 472 ‐ 510. doi: 10.1002/cpa.21540
dc.identifier.citedreferenceBella, P.; Kohn, R. V. Metric‐induced wrinkling of a thin elastic sheet. J. Nonlinear Sci. 24 ( 2014 ), no. 6, 1147 ‐ 1176. doi: 10.1007/s00332-014-9214-9
dc.identifier.citedreferenceBella, P.; Kohn, R. V. Wrinkles as the result of compressive stresses in an annular thin film. Comm. Pure Appl. Math. 67 ( 2014 ), no. 5, 693 ‐ 747. doi: 10.1002/cpa.21471
dc.identifier.citedreferenceBella, P.; Kohn, R. V. Coarsening of folds in hanging drapes. Comm. Pure Appl. Math. 70, no. 5, 978 ‐ 1021. doi: 10.1002/cpa.21643
dc.identifier.citedreferenceBen Belgacem, H.; Conti, S.; DeSimone, A.; Müller, S. Rigorous bounds for the Föppl‐von Kármán theory of isotropically compressed plates. J. Nonlinear Sci. 10 ( 2000 ), no. 6, 661 ‐ 683. doi: 10.1007/s003320010007
dc.identifier.citedreferenceConti, S.; Maggi, F. Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187 ( 2008 ), no. 1, 1 ‐ 48. doi: 10.1007/s00205-007-0076-2
dc.identifier.citedreferenceDavidovitch, B.; Schroll, R. D.; Vella, D.; Adda‐Bedia, M.; Cerda, E. A. Prototypical model for tensional wrinkling in thin sheets. Proc. Natl. Acad. Sci. 108 ( 2011 ), no. 45, 18227 ‐ 18232. doi: 10.1073/pnas.1108553108
dc.identifier.citedreferenceDeSimone, A.; Kohn, R. V.; Müller, S.; Otto, F. Recent analytical developments in micromagnetics. In: The science of hysteresis, vol. 2, 269 ‐ 381. Elsevier, Amsterdam, 2006. doi: 10.1016/B978-012480874-4/50015-4
dc.identifier.citedreferenceDonnell, L. H. A new theory for the buckling of thin cylinders under axial compression and bending. Trans. Am. Soc. Mech. Eng. 56 ( 1934 ), no. 11, 795 ‐ 806.
dc.identifier.citedreferenceFriedman, A. Partial differential equations. Holt, Rinehart and Winston, New York–Montreal–London, 1969.
dc.identifier.citedreferenceGrabovsky, Y.; Harutyunyan, D. Rigorous derivation of the formula for the buckling load in axially compressed circular cylindrical shells. J. Elasticity 120 ( 2015 ), no. 2, 249 ‐ 276. doi: 10.1007/s10659-015-9513-x
dc.identifier.citedreferenceGrabovsky, Y.; Harutyunyan, D. Scaling instability in buckling of axially compressed cylindrical shells. J. Nonlinear Sci. 26 ( 2016 ), no. 1, 83 ‐ 119. doi: 10.1007/s00332-015-9270-9
dc.identifier.citedreferenceHorák, J.; Lord, G. J.; Peletier, M. A. Cylinder buckling: the mountain pass as an organizing center. SIAM J. Appl. Math. 66 ( 2006 ), no. 5, 1793 ‐ 1824. doi: 10.1137/050635778
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.