Show simple item record

Healing of two‐wall intra‐bony defects treated with a novel EMD‐liquid—A pre‐clinical study in monkeys

dc.contributor.authorShirakata, Yoshinori
dc.contributor.authorMiron, Richard J.
dc.contributor.authorShinohara, Yukiya
dc.contributor.authorNakamura, Toshiaki
dc.contributor.authorSena, Kotaro
dc.contributor.authorHorai, Naoto
dc.contributor.authorBosshardt, Dieter D.
dc.contributor.authorNoguchi, Kazuyuki
dc.contributor.authorSculean, Anton
dc.date.accessioned2018-02-05T16:40:29Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-12
dc.identifier.citationShirakata, Yoshinori; Miron, Richard J.; Shinohara, Yukiya; Nakamura, Toshiaki; Sena, Kotaro; Horai, Naoto; Bosshardt, Dieter D.; Noguchi, Kazuyuki; Sculean, Anton (2017). "Healing of two‐wall intra‐bony defects treated with a novel EMD‐liquid—A pre‐clinical study in monkeys." Journal of Clinical Periodontology 44(12): 1264-1273.
dc.identifier.issn0303-6979
dc.identifier.issn1600-051X
dc.identifier.urihttps://hdl.handle.net/2027.42/141785
dc.description.abstractAimTo investigate the effect of a novel enamel matrix derivative formulation (EMD‐liquid or Osteogain) combined with an absorbable collagen sponge (ACS) on periodontal wound healing in intra‐bony defects in monkeys.Materials and MethodsChronic two‐wall intra‐bony defects were created at the distal aspect of eight teeth in three monkeys (Macaca fascicularis). The 24 defects were randomly assigned to one of the following treatments: (i) open flap debridement (OFD) + ACS alone, (ii) OFD + Emdogain + ACS (Emdogain/ACS), (iii) OFD + Osteogain + ACS (Osteogain/ACS) or (iv) OFD alone. At 4 months, the animals were euthanized for histologic evaluation.ResultsOsteogain/ACS resulted in more consistent formation of cementum, periodontal ligament and bone with limited epithelial proliferation compared to OFD alone, Emdogain/ACS and OFD + ACS. Among the four treatment groups, the Osteogain/ACS group demonstrated the highest amount of regenerated tissues. However, complete periodontal regeneration was not observed in any of the defects in the four groups.ConclusionsThe present findings indicate that in two‐wall intra‐bony defects, reconstructive surgery with Osteogain/ACS appears to be a promising novel approach for facilitating periodontal wound healing/regeneration, thus warranting further clinical testing.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheranimal study
dc.subject.otherenamel matrix proteins
dc.subject.otherintra‐bony defect
dc.subject.otherperiodontal regeneration
dc.subject.othercarrier
dc.titleHealing of two‐wall intra‐bony defects treated with a novel EMD‐liquid—A pre‐clinical study in monkeys
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141785/1/jcpe12825.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141785/2/jcpe12825_am.pdf
dc.identifier.doi10.1111/jcpe.12825
dc.identifier.sourceJournal of Clinical Periodontology
dc.identifier.citedreferenceShimoji, S., Miyaji, H., Sugaya, T., Tsuji, H., Hongo, T., Nakatsuka, M., … Kawanami, M. ( 2009 ). Bone perforation and placement of collagen sponge facilitate bone augmentation. Journal of Periodontology, 80, 505 – 511.
dc.identifier.citedreferencePellegrini, G., Seol, Y. J., Gruber, R., & Giannobile, W. V. ( 2009 ). Pre‐clinical models for oral and periodontal reconstructive therapies. Journal of Dental Research, 88, 1065 – 1076.
dc.identifier.citedreferencePotijanyakul, P., Sattayasansakul, W., Pongpanich, S., Leepong, N., & Kintarak, S. ( 2010 ). Effects of enamel matrix derivative on bioactive glass in rat calvarium defects. Journal of Oral Implantology, 36, 195 – 204.
dc.identifier.citedreferenceSchwarz, F., Herten, M., Ferrari, D., Wieland, M., Schmitz, L., Engelhardt, E., & Becker, J. ( 2007 ). Guided bone regeneration at dehiscence‐type defects using biphasic hydroxyapatite + beta tricalcium phosphate (Bone Ceramic) or a collagen‐coated natural bone mineral (BioOss Collagen): An immunohistochemical study in dogs. International Journal of Oral & Maxillofacial Surgery, 36, 1198 – 1206.
dc.identifier.citedreferenceSculean, A., Alesandri, R., Miron, R., Salvi, G. E., & Bosshardt, D. D. ( 2011 ). Enamel matrix proteins and periodontal wound healing and regeneration. Clinical Advances in Periodontics, 1, 101 – 117.
dc.identifier.citedreferenceSculean, A., Chiantella, G. C., Windisch, P., & Donos, N. ( 2000 ). Clinical and histologic evaluation of human intrabony defects treated with an enamel matrix protein derivative (Emdogain). The International Journal of Periodontics and Restorative Dentistry, 20, 374 – 381.
dc.identifier.citedreferenceSculean, A., Donos, N., Brecx, M., Reich, E., & Karring, T. ( 2000 ). Treatment of intrabony defects with guided tissue regeneration and enamel‐matrix‐proteins. An experimental study in monkeys. Journal of Clinical Periodontology, 27, 466 – 472.
dc.identifier.citedreferenceSculean, A., Donos, N., Windisch, P., Brecx, M., Gera, I., Reich, E., & Karring, T. ( 1999 ). Healing of human intrabony defects following treatment with enamel matrix proteins or guided tissue regeneration. Journal of Periodontal Research, 34, 310 – 322.
dc.identifier.citedreferenceSculean, A., Nikolidakis, D., Nikou, G., Ivanovic, A., Chapple, I. L., & Stavropoulos, A. ( 2015 ). Biomaterials for promoting periodontal regeneration in human intrabony defects: A systematic review. Periodontology 2000, 68, 182 – 216.
dc.identifier.citedreferenceSculean, A., Pietruska, M., Arweiler, N. B., Auschill, T. M., & Nemcovsky, C. ( 2007 ). Four‐year results of a prospective‐controlled clinical study evaluating healing of intrabony defects following treatment with an enamel matrix protein derivative alone or combined with a bioactive glass. Journal of Clinical Periodontology, 34, 507 – 513.
dc.identifier.citedreferenceSculean, A., Windisch, P., Keglevich, T., Chiantella, G. C., Gera, I., & Donos, N. ( 2003 ). Clinical and histologic evaluation of human intrabony defects treated with an enamel matrix protein derivative combined with a bovine‐derived xenograft. The International Journal of Periodontics and Restorative Dentistry, 23, 47 – 55.
dc.identifier.citedreferenceShirakata, Y., Miron, R. J., Nakamura, T., Sena, K., Shinohara, Y., Horai, N., … Sculean, A. ( 2017 ). Effects of EMD‐liquid (Osteogain) on periodontal healing in class III furcation defects in monkeys. Journal of Clinical Periodontology, 44, 298 – 307.
dc.identifier.citedreferenceShirakata, Y., Oda, S., Kinoshita, A., Kikuchi, S., Tsuchioka, H., & Ishikawa, I. ( 2002 ). Histocompatible healing of periodontal defects after application of an injectable calcium phosphate bone cement. A preliminary study in dogs. Journal of Periodontology, 73, 1043 – 1053.
dc.identifier.citedreferenceShirakata, Y., Taniyama, K., Yoshimoto, T., Miyamoto, M., Takeuchi, N., Matsuyama, T., & Noguchi, K. ( 2010 ). Regenerative effect of basic fibroblast growth factor on periodontal healing in two‐wall intrabony defects in dogs. Journal of Clinical Periodontology, 37, 374 – 381.
dc.identifier.citedreferenceShirakata, Y., Yoshimoto, T., Goto, H., Yonamine, Y., Kadomatsu, H., Miyamoto, M., … Izumi, Y. ( 2007 ). Favorable periodontal healing of 1‐wall infrabony defects after application of calcium phosphate cement wall alone or in combination with enamel matrix derivative: A pilot study with canine mandibles. Journal of Periodontology, 78, 889 – 898.
dc.identifier.citedreferenceStähli, A., Miron, R. J., Bosshardt, D. D., Sculean, A., & Gruber, R. ( 2016 ). Collagen membranes adsorb the transforming growth factor‐βreceptor kinase‐dependent activity of enamel matrix derivative. Journal of Periodontology, 87, 583 – 590.
dc.identifier.citedreferenceSusin, C., Fiorini, T., Lee, J., De Stefano, J. A., Dickinson, D. P., & Wikesjö, U. M. ( 2015 ). Wound healing following surgical and regenerative periodontal therapy. Periodontology 2000, 68, 83 – 98.
dc.identifier.citedreferenceTalley‐Ronsholdt, D. J., Lajiness, E., & Nagodawithana, K. ( 1995 ). Transforming growth factor‐beta inhibition of mineralization by neonatal rat osteoblasts in monolayer and collagen gel culture. In Vitro Cellular & Developmental Biology ‐ Animal, 31, 274 – 282.
dc.identifier.citedreferenceTonetti, M. S., Pini‐Prato, G., & Cortellini, P. ( 1993 ). Periodontal regeneration of human intrabony defects. IV. Determinants of healing response. Journal of Periodontology, 64, 934 – 940.
dc.identifier.citedreferenceTrombelli, L., & Farina, R. ( 2008 ). Clinical outcomes with bioactive agents alone or in combination with grafting or guided tissue regeneration. Journal of Clinical Periodontology, 35, 117 – 135.
dc.identifier.citedreferenceTu, Y. K., Woolston, A., & Faggison, C. M. ( 2010 ). Do bone grafts or barrier membranes provide additional treatment effects for infrabony lesions treated with enamel matrix derivative ? A network meta‐analysis of randomized‐controlled trials. Journal of Clinical Periodontology, 37, 59 – 79.
dc.identifier.citedreferenceVelasquez‐Plata, D., Scheyer, E. T., & Mellonig, J. T. ( 2002 ). Clinical comparison of an enamel matrix derivative used alone or in combination with a bovine‐derived xenograft for the treatment of periodontal osseous defects in humans. Journal of Periodontology, 73, 433 – 440.
dc.identifier.citedreferenceYamamoto, S., Masuda, H., Shibukawa, Y., & Yamada, S. ( 2007 ). Combination of bovine‐derived xenografts and enamel matrix derivative in the treatment of intrabony periodontal defects in dogs. The International Journal of Periodontics and Restorative Dentistry, 27, 471 – 479.
dc.identifier.citedreferenceYamanouchi, K., Satomura, K., Gotoh, Y., Kitaoka, E., Tobiume, S., Kume, K., & Nagayama, M. ( 2001 ). Bone formation by transplanted human osteoblasts cultured within collagen sponge with dexamethasone in vitro. Journal of Bone and Mineral Research, 16, 857 – 867.
dc.identifier.citedreferenceYamashita, M., Lazarov, M., Jones, A. A., Mealey, B. L., Mellonig, J. T., & Cochran, D. L. ( 2010 ). Periodontal regeneration using an anabolic peptide with two carriers in baboons. Journal of Periodontology, 81, 727 – 736.
dc.identifier.citedreferenceYilmaz, S., Cakar, G., Yildirim, B., & Sculean, A. ( 2010 ). Healing of two and three wall intrabony periodontal defects following treatment with an enamel matrix derivative combined with autogenous bone. Journal of Clinical Periodontology, 37, 544 – 550.
dc.identifier.citedreferenceYoshinuma, N., Sato, S., Fukuyama, T., Murai, M., & Ito, K. ( 2012 ). Ankylosis of nonresorbable hydroxyapatite graft material as a contributing factor in recurrent periodontitis. The International Journal of Periodontics and Restorative Dentistry, 32, 331 – 336.
dc.identifier.citedreferenceBokan, I., Bill, J. S., & Schlagenhauf, U. ( 2006 ). Primary flap closure combined with Emdogain alone or Emdogain and cerasorb in the treatment of intra‐bony defects. Journal of Clinical Periodontology, 33, 885 – 893.
dc.identifier.citedreferenceCaton, J., Mota, L., Gandini, L., & Laskaris, B. ( 1994 ). Non‐human primate models for testing the efficacy and safety of periodontal regeneration procedures. Journal of Periodontology, 65, 1143 – 1150.
dc.identifier.citedreferenceCochran, D. L., Jones, A., Heiji, L., Mellonig, J. T., Schoolfield, J., & King, G. N. ( 2003 ). Periodontal regeneration with a combination of enamel matrix proteins and autogenous bone grafting. Journal of Periodontology, 74, 1269 – 1281.
dc.identifier.citedreferenceCochran, D. L., Jones, A. A., Lilly, L. C., Fiorellini, J. P., & Howell, H. ( 2000 ). Evaluation of recombinant human bone morphogenetic protein‐2 in oral applications including the use of endosseous implants: 3‐year results of a pilot study in humans. Journal of Periodontology, 71, 1241 – 1257.
dc.identifier.citedreferenceDonzelli, E., Salvadè, A., Mimo, P., Viganò, M., Morrone, M., Papagna, R., … Tredici, G. ( 2007 ). Mesenchymal stem cells cultured on a collagen scaffold: In vitro osteogenic differentiation. Archives of Oral Biology, 52, 64 – 73.
dc.identifier.citedreferenceGiannobile, W. V., Finkelman, R. D., & Lynch, S. E. ( 1994 ). Comparison of canine and non‐human primate animal models for periodontal regenerative therapy : Results following a single administration of PDGF/IGF‐ I. Journal of Periodontology, 65, 1158 – 1168.
dc.identifier.citedreferenceGurinsky, B. S., Mills, M. P., & Mellonig, J. T. ( 2004 ). Clinical evaluation of demineralized freeze‐dried bone allograft and enamel matrix derivative versus enamel matrix derivative alone for the treatment of periodontal osseous defects in humans. Journal of Periodontology, 75, 1309 – 1318.
dc.identifier.citedreferenceHammarström, L., Heijl, L., & Gestrelius, S. ( 1997 ). Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. Journal of Clinical Periodontology, 24, 669 – 677.
dc.identifier.citedreferenceHeijl, L., Heden, G., Svärdström, G., & Östgren, A. ( 1997 ). Enamel matrix derivative (Emdogain Ⓡ ) in the treatment of intrabony periodontal defects. Journal of Clinical Periodontology, 24, 705 – 714.
dc.identifier.citedreferenceItoh, H., Aso, Y., Furuse, M., Noishiki, Y., & Miyata, T. ( 2001 ). A honeycomb collagen carrier for cell culture as a tissue engineering scaffold. Artificial Organs, 25, 213 – 217.
dc.identifier.citedreferenceIvanovic, A., Nikou, G., Miron, R. J., Nikolidakis, D., & Sculean, A. ( 2014 ). Which biomaterials may promote periodontal regeneration in intrabony periodontal defect? A systematic review of preclinical studies. Quintessence International, 45, 385 – 395.
dc.identifier.citedreferenceJepsen, S., Topoll, H., Rengers, H., Heinz, B., Teich, M., Hoffmann, T., … Jervoe‐Storm, R. M. ( 2008 ). Clinical outcomes after treatment of intra‐bony defects with an EMD/synthetic bone graft or EMD alone : A multicentre randomized‐controlled clinical trial. Journal of Clinical Periodontology, 35, 420 – 428.
dc.identifier.citedreferenceKim, Y. T., Wikesjö, U. M., Jung, U. W., Lee, J. S., Kim, T. G., & Kim, C. K. ( 2013 ). Comparison between a ß‐tricalcium phosphate and an absorbable collagen sponge carrier technology for rhGDF‐5‐stimulated periodontal wound healing/regeneration. Journal of Periodontology, 84, 812 – 820.
dc.identifier.citedreferenceKuru, B., Yilmaz, S., Argin, K., & Noyan, U. ( 2006 ). Enamel matrix derivative alone or in combination with a bioactive glass in wide intrabony defects. Clinical Oral Investigations, 10, 227 – 234.
dc.identifier.citedreferenceLekovic, V., Camargo, P. M., Weinlaender, M., Nedic, M., Aleksic, Z., & Kenney, E. B. ( 2000 ). A comparison between enamel matrix proteins used alone or in combination with bovine porous bone mineral in the treatment of intrabony periodontal defects in humans. Journal of Periodontology, 71, 1110 – 1116.
dc.identifier.citedreferenceMacNeill, S. R., Cobb, C. M., Rapley, J. W., Glaros, A. G., & Spencer, P. ( 1999 ). In vivo comparison of synthetic osseous graft materials. A preliminary study. Journal of Clinical Periodontology, 26, 239 – 245.
dc.identifier.citedreferenceMatarasso, M., Iorio‐Siciliano, V., Blasi, A., Ramaglia, L., Salvi, G. E., & Sculean, A. ( 2015 ). Enamel matrix derivative and bone grafts for periodontal regeneration of intrabony defects. A systematic review and meta‐analysis. Clinical Oral Investigations, 19, 1581 – 1593.
dc.identifier.citedreferenceMcPherson, J. M. ( 1992 ). The utility of collagen‐based vehicles in delivery of growth factors for hard and soft tissue wound repair. Clinical Materials, 9, 225 – 234.
dc.identifier.citedreferenceMellonig, J. T. ( 1999 ). Enamel matrix derivative for periodontal reconstructive surgery: Technique and clinical and histologic case report. The International Journal of Periodontics and Restorative Dentistry, 19, 8 – 19.
dc.identifier.citedreferenceMiron, R. J., Bosshardt, D. D., Buser, D., Zhang, Y., Tugulu, S., Gemperli, A., … Sculean, A. ( 2015 ). Comparison of the capacity of enamel matrix derivative gel and enamel matrix derivative in liquid formulation to adsorb to bone grafting materials. Journal of Periodontology, 86, 578 – 587.
dc.identifier.citedreferenceMiron, R. J., Chandad, F., Buser, D., Sculean, A., Cochran, D. L., & Zhang, Y. ( 2016 ). Effect of enamel matrix derivative (EMD)‐liquid on osteoblast and periodontal ligament cell proliferation and differentiation. Journal of Periodontology, 87, 91 – 99.
dc.identifier.citedreferenceMiron, R. J., Fujioka‐Kobayashi, M., Zhang, Y., Caballé‐Serrano, J., Shirakata, Y., Bosshardt, D. D., … Sculean, A. ( 2016 ). Osteogain improves osteoblast adhesion, proliferation and differentiation on a bovine‐derived natural bone mineral. Clinical Oral Implants Research, https://doi.org/10.1111/clr.12802
dc.identifier.citedreferenceMiron, R. J., Fujioka‐Kobayashi, M., Zhang, Y., Sculean, A., Pippenger, B., Shirakata, Y., … Hernandez, M. ( 2017 ). Osteogain ® loaded onto an absorbable collagen sponge induces attachment and osteoblast differentiation of ST2 cells in vitro. Clinical Oral Investigations, 21, 2265 – 2272.
dc.identifier.citedreferenceMiron, R. J., Guillemette, V., Zhang, Y., Chandad, F., & Sculean, A. ( 2014 ). Enamel matrix derivative in combination with bone grafts : A review of the literature. Quintessence International, 45, 475 – 487.
dc.identifier.citedreferenceMiron, R. J., Sculean, A., Cochran, D. L., Froum, S., Zucchelli, G., Nemcovsky, C., … Bosshardt, D. D. ( 2016 ). 20 years of Enamel Matrix Derivative: The past, the present and the future. Journal of Clinical Periodontology, 43, 668 – 683.
dc.identifier.citedreferenceMizuno, M., Shindo, M., Kobayashi, D., Tsuruga, E., Amemiya, A., & Kuboki, Y. ( 1997 ). Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone, 20, 101 – 107.
dc.identifier.citedreferenceOz, H. S., & Puleo, D. A. ( 2011 ). Animal models for periodontal disease. Journal of Biomedicine and Biotechnology, https://doi.org/10.1155/2011/754857
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.