Show simple item record

Improved quantitative 90Y bremsstrahlung SPECT/CT reconstruction with Monte Carlo scatter modeling

dc.contributor.authorDewaraja, Yuni K.
dc.contributor.authorChun, Se Young
dc.contributor.authorSrinivasa, Ravi N.
dc.contributor.authorKaza, Ravi K.
dc.contributor.authorCuneo, Kyle C.
dc.contributor.authorMajdalany, Bill S.
dc.contributor.authorNovelli, Paula M.
dc.contributor.authorLjungberg, Michael
dc.contributor.authorFessler, Jeffrey A.
dc.date.accessioned2018-02-05T16:40:46Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-12
dc.identifier.citationDewaraja, Yuni K.; Chun, Se Young; Srinivasa, Ravi N.; Kaza, Ravi K.; Cuneo, Kyle C.; Majdalany, Bill S.; Novelli, Paula M.; Ljungberg, Michael; Fessler, Jeffrey A. (2017). "Improved quantitative 90Y bremsstrahlung SPECT/CT reconstruction with Monte Carlo scatter modeling." Medical Physics 44(12): 6364-6376.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/141802
dc.publisherTaylor & Francis
dc.publisherWiley Periodicals, Inc.
dc.subject.other90Y
dc.subject.otherradioembolization
dc.subject.otherreconstruction
dc.subject.otherSPECT/CT
dc.subject.otherbremsstrahlung
dc.titleImproved quantitative 90Y bremsstrahlung SPECT/CT reconstruction with Monte Carlo scatter modeling
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141802/1/mp12597_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141802/2/mp12597.pdf
dc.identifier.doi10.1002/mp.12597
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceKao YH, Magsombol BM, Toh Y, et al. Personalized predictive lung dosimetry by technetium‐99 m macroaggregated albumin SPECT/CT for yttrium‐90 radioembolization. Eur J Nucl Med Mol Imaging Res. 2014; 4: 33.
dc.identifier.citedreferenceMoore SC, Ouyang J, Park MA, Fakhri GE. Monte Carlo‐based compensation for patient scatter, detector scatter, and crosstalk contamination in In‐111 SPECT imaging. Nucl Instrum Methods Phys Res, Sect A. 2006; 569: 472 – 476.
dc.identifier.citedreferenceZeng GL, Gullberg GT. Unmatched projector/backprojector pairs in an iterative reconstruction algorithm. IEEE Trans Med Imaging. 2002; 19: 548 – 555.
dc.identifier.citedreferenceNguyen MP, Kim H, Chun SY, Fessler JA, Dewaraja YK. Joint spectral image reconstruction for 90Y SPECT with multi‐window acquisition. Proc. IEEE Nuc Sci Symp Med Imag Conf; 2015.
dc.identifier.citedreferenceZeng GL, Gulbert GT. Frequency domain implementation of the three‐dimensional geometric point response correction in SPECT imaging. IEEE Trans Nucl Sci. 1992; 39: 1444 – 1453.
dc.identifier.citedreferenceLjungberg M. The SIMIND Monte Carlo program. In: Ljungberg M, Strand SE, King MA, eds. Monte Carlo Calculation in Nuclear Medicine: Application in Diagnostic Imaging, 2nd edn. Florida: Taylor & Francis; 2012.
dc.identifier.citedreferenceRault E, Staelens S, Van Holen R, De Beenhouwer J, Vandenberghe S. Fast simulation of yttrium‐90 bremsstrahlung photons with GATE. Med Phys. 2010; 37: 2943 – 2950.
dc.identifier.citedreferenceDewaraja YK, Ljungberg M, Koral KF. Characterization of scatter and penetration using Monte Carlo simulation in 131I imaging. J Nucl Med. 2000; 41: 123 – 130.
dc.identifier.citedreferenceChun SY, Fessler JA, Dewaraja YK. Correction for collimator‐detector response in SPECT using point spread function template. IEEE Trans Med Imaging. 2013; 32: 295 – 305.
dc.identifier.citedreferenceKoral KF, Yendiki A, Dewaraja YK. Recovery of total I‐131 activity within focal volumes using SPECT and 3D OSEM. Phys Med Biol. 2007; 52: 777 – 790.
dc.identifier.citedreferencePark M‐A, Mahmood A, Zimmerman RE, Limpa‐Amara N, Makrigiorgos GM, Moore SC. Adsorption of metallic radionuclides on plastic phantom walls. Med Phys. 2008; 35: 1606 – 1610.
dc.identifier.citedreferenceZimmerman B, Cessna J, Millican M. Experimental determination of calibration settings for plastic syringes containing solutions of 90Y using commercial radionuclide calibrators. Appl Radiat Isot. 2004; 60: 511 – 517.
dc.identifier.citedreferenceCampbell JM, Wong CO, Muzik O, Marples B, Joiner M, Burmeister J. Early dose response to yttrium‐90 microsphere treatment of metastatic liver cancer by a patient‐specific method using single photon emission computed tomography and positron emission tomography. Int J Radiat Oncol Biol Phys. 2009; 74: 313 – 320.
dc.identifier.citedreferenceKao YH, Hock Tan AE, Burgmans MC, et al. Image‐guided personalized predictive dosimetry by artery‐specific SPECT/CT partition modeling for safe and effective 90Y radioembolization. J Nucl Med. 2012; 53: 559 – 566.
dc.identifier.citedreferenceGarin E, Lenoir L, Rolland Y, et al. Dosimetry based on 99 mTc‐macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y‐loaded glass microspheres: preliminary results. J Nucl Med. 2012; 53: 255 – 263.
dc.identifier.citedreferenceDewaraja YK, Roberson P, Clinthorne N, et al. Quantitative bremsstrahlung SPECT/CT image reconstruction with patient specific Monte Carlo scatter compensation for 90Y microsphere radio embolization [abstract]. J Nucl Med. 2012; 53: 444.
dc.identifier.citedreferenceKokabi N, Galt JR, Xing M, et al. A simple method for estimating dose delivered to hepatocellular carcinoma after yttrium‐90 glass‐based radioembolization therapy: preliminary results of a proof of concept study. J Vasc Interv Radiol. 2014; 25: 277 – 287.
dc.identifier.citedreferenceChiesa C, Mira M, Maccauro M, et al. Radioembolization of hepatocarcinoma with (90)Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur J Nucl Med Mol Imaging. 2015; 42: 1718 – 1738.
dc.identifier.citedreferencePacilio M, Ferrari M, Chiesa C, et al. Impact of SPECT corrections on 3D‐dosimetry for liver transarterial radioembolization using the patient relative calibration methodology. Med Phys. 2016; 43: 4053 – 4064.
dc.identifier.citedreferenceStrigari L, Sciuto R, Rea S, et al. Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y‐SIR spheres: radiobiologic considerations. J Nucl Med. 2010; 51: 1377 – 1385.
dc.identifier.citedreferenceCherry SR, Sorenson JA, Phelps ME. Physics in Nuclear Medicine, 4th edn. Philadelphia, PA: Elsevier; 2003.
dc.identifier.citedreferenceVan Elmbt L, Vandenberghe S, Walrand S, Pauwels S, Jamar F. Comparison of yttrium‐90 quantitative imaging by TOF and non‐TOF PET in a phantom of liver selective internal radiotherapy. Phys Med Biol. 2011; 56: 6759 – 6777.
dc.identifier.citedreferenceCarlier T, Eugène T, Bodet‐Milin C, et al. Assessment of acquisition protocols for routine imaging of 90Y using PET/CT. Eur J Nucl Med Mol Imaging Res. 2013; 3: 11.
dc.identifier.citedreferenceDewaraja YK, Novelli PM, Fessler JA, et al. 90Y imaging for dosimetry in radioembolization: comparison between scatter corrected bremsstrahlung SPECT/CT and time‐of‐flight PET/CT [abstract]. Eur J Nucl Med Mol Imaging. 2015; 42: S156.
dc.identifier.citedreferenceCremonesi M, Chiesa C, Strigari L, et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol. 2014; 4: 210.
dc.identifier.citedreferenceSiman W, Mikell JK, Kappadath SC. Practical reconstruction protocol for quantitative (90)Y bremsstrahlung SPECT/CT. Med Phys. 2016; 43: 5093 – 5103.
dc.identifier.citedreferenceWhite DR, Griffith RV, Wilson IJ. Photon, Electron, Proton and Neutron Interaction Data for Body Tissues. ICRU Report 46. Bethesda, MD: International Commission on Radiation Units and Measurements; 1992.
dc.identifier.citedreferenceKennedy A. Radioembolization of hepatic tumors. J Gastrointest Oncol. 2014; 5: 178 – 189.
dc.identifier.citedreferenceGoldsmith SJ. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med. 2010; 40: 122 – 135.
dc.identifier.citedreferencehttps://www.clinicaltrials.gov/ct2/results?term=90Y&Search=Search. Accessed January 28, 2017.
dc.identifier.citedreferenceMinarik D, Sjögreen Gleisner K, Ljungberg M. Evaluation of quantitative (90)Y SPECT based on experimental phantom studies. Phys Med Biol. 2008; 53: 5689 – 5703.
dc.identifier.citedreferenceRong X, Du Y, Ljungberg M, Rault E, Vandenberghe S, Frey EC. Development and evaluation of an improved quantitative 90Y bremsstrahlung SPECT method. Med Phys. 2012; 39: 2346 – 2358.
dc.identifier.citedreferenceElschot M, Lam MG, van den Bosch MA, Viergever MA, de Jong HW. Quantitative Monte Carlo based 90Y SPECT reconstruction. J Nucl Med. 2013; 54: 1557 – 1563.
dc.identifier.citedreferencePasciak AS, Bourgeois AC, McKinne JM, et al. Radioembolization and the dynamic role of 90Y PET/CT. Front Oncol. 2014; 4: 38.
dc.identifier.citedreferenceWillowson KP, Tapner M; QUEST Investigator Team, Bailey DL. A multicentre comparison of quantitative (90)Y PET/CT for dosimetric purposes after radioembolization with resin microspheres: the QUEST Phantom Study. Eur J Nucl Med Mol Imaging. 2015; 42: 1202 – 1222.
dc.identifier.citedreferenceD’Arienzo M. Emission of β + particles via internal pair production in the 0 + – 0 + transition of 90 Zr: historical background and current applications in nuclear medicine imaging. Atoms. 2013; 1: 2 – 12.
dc.identifier.citedreferenceSmits ML, Elschot M, Sze DY, et al. Radioembolization dosimetry: the road ahead. Cardiovasc Intervent Radiol. 2015; 38: 261 – 269.
dc.identifier.citedreferenceUribe CF, Esquinas PL, Piwowarska‐Bilska H, et al. Characteristics of bremsstrahlung emissions from radionuclide therapy isotopes. Proc. IEEE Nuc Sci Symp Med Imag Conf; 2013.
dc.identifier.citedreferenceSimpkin DJ, Cullom SJ, Mackie T. The spatial and energy dependence of bremsstrahlung production about beta point sources in H 2 O. Med Phys. 1992; 19: 105 – 114.
dc.identifier.citedreferenceBowsher JE, Floyd CE Jr. Treatment of compton scattering in maximum‐likelihood, expectation‐maximization reconstructions of SPECT images. J Nucl Med. 1991; 32: 1285 – 1291.
dc.identifier.citedreferenceDaube‐Witherspoon ME, Carson RE, Yen YC, Yap TK. Scatter correction in maximum‐likelihood reconstruction of PET data IEEE Nucler Science Symposium and Medical Imaging Conference; 1992. Conference Record https://doi.org/10.1109/nssmic.1992.301098.
dc.identifier.citedreferenceDewaraja YK, Ljungberg M, Fessler JA. 3‐D Monte Carlo‐based scatter compensation in quantitative I‐131 SPECT reconstruction. IEEE Trans Nucl Sci. 2006; 53: 181 – 188.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.