Myelin development, plasticity, and pathology in the auditory system
dc.contributor.author | Long, Patrick | |
dc.contributor.author | Wan, Guoqiang | |
dc.contributor.author | Roberts, Michael T. | |
dc.contributor.author | Corfas, Gabriel | |
dc.date.accessioned | 2018-02-05T16:41:22Z | |
dc.date.available | 2019-04-01T15:01:10Z | en |
dc.date.issued | 2018-02 | |
dc.identifier.citation | Long, Patrick; Wan, Guoqiang; Roberts, Michael T.; Corfas, Gabriel (2018). "Myelin development, plasticity, and pathology in the auditory system." Developmental Neurobiology 78(2): 80-92. | |
dc.identifier.issn | 1932-8451 | |
dc.identifier.issn | 1932-846X | |
dc.identifier.uri | https://hdl.handle.net/2027.42/141835 | |
dc.description.abstract | Myelin allows for the rapid and precise timing of action potential propagation along neuronal circuits and is essential for healthy auditory system function. In this article, we discuss what is currently known about myelin in the auditory system with a focus on the timing of myelination during auditory system development, the role of myelin in supporting peripheral and central auditory circuit function, and how various myelin pathologies compromise auditory information processing. Additionally, in keeping with the increasing recognition that myelin is dynamic and is influenced by experience throughout life, we review the growing evidence that auditory sensory deprivation alters myelin along specific segments of the brain’s auditory circuit. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 80–92, 2018 | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | circuits | |
dc.subject.other | hearing | |
dc.subject.other | deafness | |
dc.subject.other | myelin | |
dc.subject.other | auditory | |
dc.title | Myelin development, plasticity, and pathology in the auditory system | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Neurosciences | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/141835/1/dneu22538_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/141835/2/dneu22538.pdf | |
dc.identifier.doi | 10.1002/dneu.22538 | |
dc.identifier.source | Developmental Neurobiology | |
dc.identifier.citedreference | Seidl AH, Rubel EW, Barria A. 2014. Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons. J Neurosci 34: 4914 – 4919. | |
dc.identifier.citedreference | Tang W, Zhang Y, Chang Q, Ahmad S, Dahlke I, Yi H, Chen P, et al. 2006. Connexin29 is highly expressed in cochlear Schwann cells, and it is required for the normal development and function of the auditory nerve of mice. J Neurosci 26: 1991 – 1999. | |
dc.identifier.citedreference | Taveggia C, Thaker P, Petrylak A, Caporaso GL, Toews A, Falls DL, Einheber S, et al. 2008. Type III neuregulin‐1 promotes oligodendrocyte myelination. Glia 56: 284 – 293. | |
dc.identifier.citedreference | Toesca A. 1996. Central and peripheral myelin in the rat cochlear and vestibular nerves. Neurosci Lett 221: 21 – 24. | |
dc.identifier.citedreference | Tollin DJ. 2003. The lateral superior olive: A functional role in sound source localization. Neuroscientist 9: 127 – 143. | |
dc.identifier.citedreference | Travers BG, Adluru N, Ennis C, Tromp do PM, Destiche D, Doran S, Bigler ED, et al. 2012. Diffusion tensor imaging in autism spectrum disorder: A review. Autism Res 5: 289 – 313. | |
dc.identifier.citedreference | Tremblay ME, Zettel ML, Ison JR, Allen PD, Majewska AK. 2012. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60: 541 – 558. | |
dc.identifier.citedreference | Tylstedt S, Kinnefors A, Rask‐Andersen H. 1997. Neural interaction in the human spiral ganglion: A TEM study. Acta oto‐Laryngol 117: 505 – 512. | |
dc.identifier.citedreference | Ueda N, Kuroiwa Y. 2008. Sensorineural deafness in Guillain–Barre syndrome. Brain Nerve 60: 1181 – 1186. | |
dc.identifier.citedreference | van Ruijven MW, de Groot JC, Smoorenburg GF. 2004. Time sequence of degeneration pattern in the guinea pig cochlea during cisplatin administration. A quantitative histological study. Hear Res 197: 44 – 54. | |
dc.identifier.citedreference | Wake H, Lee PR, Fields RD. 2011. Control of local protein synthesis and initial events in myelination by action potentials. Science 333: 1647 – 1651. | |
dc.identifier.citedreference | Wan G, Corfas G. 2017. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss. Nat Commun 8: 14487. | |
dc.identifier.citedreference | Wang J, Zhang B, Jiang H, Zhang L, Liu D, Xiao X, Ma H, et al. 2013. Myelination of the postnatal mouse cochlear nerve at the peripheral‐central nervous system transitional zone. Front Pediatr 1: 43. | |
dc.identifier.citedreference | Warr WB. 1966. Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat. Exp Neurol 14: 453 – 474. | |
dc.identifier.citedreference | Werner HB, Kramer‐Albers EM, Strenzke N, Saher G, Tenzer S, Ohno‐Iwashita Y, De Monasterio‐Schrader P, Mobius W, Moser T, Griffiths IR, Nave KA. 2013. A critical role for the cholesterol‐associated proteolipids PLP and M6B in myelination of the central nervous system. Glia 61: 567 – 586. | |
dc.identifier.citedreference | Wigand M, Kubicki M, Clemm von Hohenberg C, Leicht G, Karch S, Eckbo R, Pelavin PE, et al. 2015. Auditory verbal hallucinations and the interhemispheric auditory pathway in chronic schizophrenia. World J Biol Psychiatry 16: 31 – 44. | |
dc.identifier.citedreference | Xiao J, Wong AW, Willingham MM, van den Buuse M, Kilpatrick TJ, Murray SS. 2010. Brain‐derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes. Neurosignals 18: 186 – 202. | |
dc.identifier.citedreference | Xing Y, Samuvel DJ, Stevens SM, Dubno JR, Schulte BA, Lang H. 2012. Age‐related changes of myelin basic protein in mouse and human auditory nerve. PLoS One 7: e34500. | |
dc.identifier.citedreference | Ye HB, Shi HB, Wang J, Ding DL, Yu DZ, Chen ZN, Li CY, et al. 2012. Bilirubin induces auditory neuropathy in neonatal guinea pigs via auditory nerve fiber damage. J Neurosci Res 90: 2201 – 2213. | |
dc.identifier.citedreference | Yin TC, Chan JC. 1990. Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64: 465 – 488. | |
dc.identifier.citedreference | Zenisek R, Thaler NS, Sutton GP, Ringdahl EN, Snyder JS, Allen DN. 2015. Auditory processing deficits in bipolar disorder with and without a history of psychotic features. Bipolar Disord 17: 769 – 780. | |
dc.identifier.citedreference | Zhou R, Abbas PJ, Assouline JG. 1995a. Electrically evoked auditory brainstem response in peripherally myelin‐deficient mice. Hear Res 88: 98 – 106. | |
dc.identifier.citedreference | Zhou R, Assouline JG, Abbas PJ, Messing A, Gantz BJ. 1995b. Anatomical and physiological measures of auditory system in mice with peripheral myelin deficiency. Hear Res 88: 87 – 97. | |
dc.identifier.citedreference | Anniko M. 1983. Early development and maturation of the spiral ganglion. Acta oto‐Laryngol 95: 263 – 276. | |
dc.identifier.citedreference | Banks MI, Smith PH. 1992. Intracellular recordings from neurobiotin‐labeled cells in brain slices of the rat medial nucleus of the trapezoid body. J Neurosci 12: 2819 – 2837. | |
dc.identifier.citedreference | Barrera K, Chu P, Abramowitz J, Steger R, Ramos RL, Brumberg JC. 2013. Organization of myelin in the mouse somatosensory barrel cortex and the effects of sensory deprivation. Dev Neurobiol 73: 297 – 314. | |
dc.identifier.citedreference | Barres BA, Raff MC. 1993. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361: 258 – 260. | |
dc.identifier.citedreference | Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullen F. 2005. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8: 1148 – 1150. | |
dc.identifier.citedreference | Birnholz JC, Benacerraf BR. 1983. The development of human fetal hearing. Science 222: 516 – 518. | |
dc.identifier.citedreference | Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B. 2002. Precise inhibition is essential for microsecond interaural time difference coding. Nature 417: 543 – 547. | |
dc.identifier.citedreference | Cant NB, Casseday JH. 1986. Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 247: 457 – 476. | |
dc.identifier.citedreference | Carozzi VA, Canta A, Chiorazzi A. 2015. Chemotherapy‐induced peripheral neuropathy: What do we know about mechanisms? Neurosci Lett 596: 90 – 107. | |
dc.identifier.citedreference | Chiappa KH, Harrison JL, Brooks EB, Young RR. 1980. Brainstem auditory evoked responses in 200 patients with multiple sclerosis. Ann Neurol 7: 135 – 143. | |
dc.identifier.citedreference | Cohen GM, Park JC, Grasso JS. 1990. Comparison of demyelination and neural degeneration in spiral and Scarpa’s ganglia of C57BL/6 mice. J Electron Microsc Techn 15: 165 – 172. | |
dc.identifier.citedreference | Cope TE, Baguley DM, Griffiths TD. 2015. The functional anatomy of central auditory processing. Pract Neurol 15: 302 – 308. | |
dc.identifier.citedreference | de Villers‐Sidani E, Alzghoul L, Zhou X, Simpson KL, Lin RC, Merzenich MM. 2010. Recovery of functional and structural age‐related changes in the rat primary auditory cortex with operant training. Proc Natl Acad Sci USA 107: 13900 – 13905. | |
dc.identifier.citedreference | Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, Couraud F, Zalc B, et al. 1996. Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci USA 93: 9887 – 9892. | |
dc.identifier.citedreference | Ding L, McFadden SL, Salvi RJ. 2002. Calpain immunoreactivity and morphological damage in chinchilla inner ears after carboplatin. J Assoc Res Otolaryngol 3: 68 – 79. | |
dc.identifier.citedreference | Dinh ML, Koppel SJ, Korn MJ, Cramer KS. 2014. Distribution of glial cells in the auditory brainstem: Normal development and effects of unilateral lesion. Neuroscience 278: 237 – 252. | |
dc.identifier.citedreference | Doty RL, Tourbier I, Davis S, Rotz J, Cuzzocreo JL, Treem J, Shephard N, et al. 2012. Pure‐tone auditory thresholds are not chronically elevated in multiple sclerosis. Behav Neurosci 126: 314 – 324. | |
dc.identifier.citedreference | Ehmann H, Hartwich H, Salzig C, Hartmann N, Clement‐Ziza M, Ushakov K, Avraham KB, et al. 2013. Time‐dependent gene expression analysis of the developing superior olivary complex. J Biol Chem 288: 25865 – 25879. | |
dc.identifier.citedreference | Ehret G. 1976. Development of absolute auditory thresholds in the house mouse ( Mus musculus ). J Am Audiol Soc 1: 179 – 184. | |
dc.identifier.citedreference | Emmorey K, Allen JS, Bruss J, Schenker N, Damasio H. 2003. A morphometric analysis of auditory brain regions in congenitally deaf adults. Proc Natl Acad Sci USA 100: 10049 – 10054. | |
dc.identifier.citedreference | Etxeberria A, Hokanson KC, Dao DQ, Mayoral SR, Mei F, Redmond SA, Ullian EM, et al. 2016. Dynamic modulation of myelination in response to visual stimuli alters optic nerve conduction velocity. J Neurosci 36: 6937 – 6948. | |
dc.identifier.citedreference | Farah R, Schmithorst VJ, Keith RW, Holland SK. 2014. Altered white matter microstructure underlies listening difficulties in children suspected of auditory processing disorders: A DTI study. Brain Behav 4: 531 – 543. | |
dc.identifier.citedreference | Fields RD. 2008. White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31: 361 – 370. | |
dc.identifier.citedreference | Ford MC, Alexandrova O, Cossell L, Stange‐Marten A, Sinclair J, Kopp‐Scheinpflug C, Pecka M, et al. 2015. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat Commun 6: 8073. | |
dc.identifier.citedreference | Foss‐Feig JH, Schauder KB, Key AP, Wallace MT, Stone WL. 2017. Audition‐specific temporal processing deficits associated with language function in children with autism spectrum disorder. Autism Res. | |
dc.identifier.citedreference | Fraher JP. 1992. The CNS‐PNS transitional zone of the rat. Morphometric studies at cranial and spinal levels. Progr Neurobiol 38: 261 – 316. | |
dc.identifier.citedreference | Furst M, Levine RA. 2015. Hearing disorders in multiple sclerosis. Handb Clin Neurol 129: 649 – 665. | |
dc.identifier.citedreference | Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, et al. 2014. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344: 1252304. | |
dc.identifier.citedreference | Goldberg JM, Brown PB. 1969. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32: 613 – 636. | |
dc.identifier.citedreference | Gomes E, Pedroso FS, Wagner MB. 2008. Auditory hypersensitivity in the autistic spectrum disorder. Pro Fono 20: 279 – 284. | |
dc.identifier.citedreference | Grothe B, Pecka M. 2014. The natural history of sound localization in mammals–a story of neuronal inhibition. Front Neural Circuits 8: 116. | |
dc.identifier.citedreference | Grothe B, Sanes DH. 1993. Bilateral inhibition by glycinergic afferents in the medial superior olive. J Neurophysiol 69: 1192 – 1196. | |
dc.identifier.citedreference | Guinan JJ, Guinan SS, Norris BE. 1972. Single auditory units in superior olivary complex.2. Locations of unit categories and tonotopic organization. Int J Neurosci 4: 147. | |
dc.identifier.citedreference | Hackett TA, Guo Y, Clause A, Hackett NJ, Garbett K, Zhang P, Polley DB, et al. 2015. Transcriptional maturation of the mouse auditory forebrain. BMC Genomics 16: 606. | |
dc.identifier.citedreference | Hafidi A, Katz JA, Sanes DH. 1996. Differential expression of MAG, MBP and L1 in the developing lateral superior olive. Brain Res 736: 35 – 43. | |
dc.identifier.citedreference | Harrison JM, Warr WB. 1962. A study of the cochlear nuclei and ascending auditory pathways of the medulla. J Comp Neurol 119: 341 – 379. | |
dc.identifier.citedreference | Hellmann MA, Steiner I, Mosberg‐Galili R. 2011. Sudden sensorineural hearing loss in multiple sclerosis: Clinical course and possible pathogenesis. Acta Neurol Scand 124: 245 – 249. | |
dc.identifier.citedreference | Hill RA, Patel KD, Goncalves CM, Grutzendler J, Nishiyama A. 2014. Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat Neurosci 17: 1518 – 1527. | |
dc.identifier.citedreference | Hoeffding V, Feldman ML. 1988. Changes with age in the morphology of the cochlear nerve in rats: Light microscopy. J Comp Neurol 276: 537 – 546. | |
dc.identifier.citedreference | Hossain WA, Antic SD, Yang Y, Rasband MN, Morest DK. 2005. Where is the spike generator of the cochlear nerve? Voltage‐gated sodium channels in the mouse cochlea. J Neurosci 25: 6857 – 6868. | |
dc.identifier.citedreference | Hribar M, Suput D, Carvalho AA, Battelino S, Vovk A. 2014. Structural alterations of brain grey and white matter in early deaf adults. Hear Res 318: 1 – 10. | |
dc.identifier.citedreference | Hubl D, Koenig T, Strik W, Federspiel A, Kreis R, Boesch C, Maier SE, et al. 2004. Pathways that make voices: White matter changes in auditory hallucinations. Arch Gen Psychiatry 61: 658 – 668. | |
dc.identifier.citedreference | Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD. 2006. Astrocytes promote myelination in response to electrical impulses. Neuron 49: 823 – 832. | |
dc.identifier.citedreference | Jyothi V, Li M, Kilpatrick LA, Smythe N, LaRue AC, Zhou D, Schulte BA, et al. 2010. Unmyelinated auditory type I spiral ganglion neurons in congenic Ly5.1 mice. J Comp Neurol 518: 3254 – 3271. | |
dc.identifier.citedreference | Kahkonen S, Yamashita H, Rytsala H, Suominen K, Ahveninen J, Isometsa E. 2007. Dysfunction in early auditory processing in major depressive disorder revealed by combined MEG and EEG. J Psychiatry Neurosci 32: 316 – 322. | |
dc.identifier.citedreference | Kane KL, Longo‐Guess CM, Gagnon LH, Ding D, Salvi RJ, Johnson KR. 2012. Genetic background effects on age‐related hearing loss associated with Cdh23 variants in mice. Hear Res 283: 80 – 88. | |
dc.identifier.citedreference | Kim DJ, Park SY, Kim J, Lee DH, Park HJ. 2009. Alterations of white matter diffusion anisotropy in early deafness. Neuroreport 20: 1032 – 1036. | |
dc.identifier.citedreference | Kim KX, Rutherford MA. 2016. Maturation of NaV and KV channel topographies in the auditory nerve spike initiator before and after developmental onset of hearing function. J Neurosci 36: 2111 – 2118. | |
dc.identifier.citedreference | Klumpp RG, Eady HR. 1956. Some measurements of interaural time difference thresholds. J Acoust Soc Am 28: 859 – 860. | |
dc.identifier.citedreference | Knipper M, Bandtlow C, Gestwa L, Kopschall I, Rohbock K, Wiechers B, Zenner HP, et al. 1998. Thyroid hormone affects Schwann cell and oligodendrocyte gene expression at the glial transition zone of the VIIIth nerve prior to cochlea function. Development 125: 3709 – 3718. | |
dc.identifier.citedreference | Knochel C, Oertel‐Knochel V, Schonmeyer R, Rotarska‐Jagiela A, van de Ven V, Prvulovic D, Haenschel C, et al. 2012. Interhemispheric hypoconnectivity in schizophrenia: Fiber integrity and volume differences of the corpus callosum in patients and unaffected relatives. NeuroImage 59: 926 – 934. | |
dc.identifier.citedreference | Kolson DR, Wan J, Wu J, Dehoff M, Brandebura AN, Qian J, Mathers PH, et al. 2016. Temporal patterns of gene expression during calyx of held development. Dev Neurobiol 76: 166 – 189. | |
dc.identifier.citedreference | Kopp‐Scheinpflug C, Tempel BL. 2015. Decreased temporal precision of neuronal signaling as a candidate mechanism of auditory processing disorder. Hear Res 330: 213 – 220. | |
dc.identifier.citedreference | Kovach MJ, Lin JP, Boyadjiev S, Campbell K, Mazzeo L, Herman K, Rimer LA, et al. 1999. A unique point mutation in the PMP22 gene is associated with Charcot–Marie–Tooth disease and deafness. Am J Hum Genet 64: 1580 – 1593. | |
dc.identifier.citedreference | Lee DL, Strathmann FG, Gelein R, Walton J, Mayer‐Proschel M. 2012. Iron deficiency disrupts axon maturation of the developing auditory nerve. J Neurosci 32: 5010 – 5015. | |
dc.identifier.citedreference | Lee HU, Nag S, Blasiak A, Jin Y, Thakor N, Yang IH. 2016. Subcellular optogenetic stimulation for activity‐dependent myelination of axons in a novel microfluidic compartmentalized platform. ACS Chem Neurosci 7: 1317 – 1324. | |
dc.identifier.citedreference | Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF. 2016. Toward a differential diagnosis of hidden hearing loss in humans. PLoS One 11: e0162726. | |
dc.identifier.citedreference | Lindsey BG. 1975. Fine structure and distribution of axon terminals from the cochlear nucleus on neurons in the medial superior olivary nucleus of the cat. J Comp Neurol 160: 81 – 103. | |
dc.identifier.citedreference | Liu J, Dietz K, DeLoyht JM, Pedre X, Kelkar D, Kaur J, Vialou V, et al. 2012. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat Neurosci 15: 1621 – 1623. | |
dc.identifier.citedreference | Liu W, Edin F, Atturo F, Rieger G, Lowenheim H, Senn P, Blumer M, et al. 2015. The pre‐ and post‐somatic segments of the human type I spiral ganglion neurons–structural and functional considerations related to cochlear implantation. Neuroscience 284: 470 – 482. | |
dc.identifier.citedreference | Makinodan M, Rosen KM, Ito S, Corfas G. 2012. A critical period for social experience‐dependent oligodendrocyte maturation and myelination. Science 337: 1357 – 1360. | |
dc.identifier.citedreference | McLachlan NM, Phillips DS, Rossell SL, Wilson SJ. 2013. Auditory processing and hallucinations in schizophrenia. Schizophr Res 150: 380 – 385. | |
dc.identifier.citedreference | Mensch S, Baraban M, Almeida R, Czopka T, Ausborn J, El Manira A, Lyons DA. 2015. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat Neurosci 18: 628 – 630. | |
dc.identifier.citedreference | Miller DJ, Lackey EP, Hackett TA, Kaas JH. 2013. Development of myelination and cholinergic innervation in the central auditory system of a prosimian primate ( Otolemur garnetti ). J Comp Neurol 521: 3804 – 3816. | |
dc.identifier.citedreference | Mills AW. 1960. Lateralization of high‐frequency tones. J Acoust Soc Am 32: 132 – 134. | |
dc.identifier.citedreference | Moore JK, Linthicum FH. Jr., 2001. Myelination of the human auditory nerve: Different time courses for Schwann cell and glial myelin. Ann Otol Rhinol Laryngol 110: 655 – 661. | |
dc.identifier.citedreference | Moore JK, Perazzo LM, Braun A. 1995. Time course of axonal myelination in the human brainstem auditory pathway. Hear Res 87: 21 – 31. | |
dc.identifier.citedreference | Stotler WA. 1953. An experimental study of the cells and connections of the superior olivary complex of the cat. J Comp Neurol 98: 401 – 431. | |
dc.identifier.citedreference | Mulert C, Kirsch V, Whitford TJ, Alvarado J, Pelavin P, McCarley RW, Kubicki M, et al. 2012. Hearing voices: A role of interhemispheric auditory connectivity?. World J Biol Psychiatry 13: 153 – 158. | |
dc.identifier.citedreference | Naito R, Murofushi T, Mizutani M, Kaga K. 1999. Auditory brainstem responses, electrocochleograms, and cochlear microphonics in the myelin deficient mutant hamster ’bt’. Hear Res 136: 44 – 48. | |
dc.identifier.citedreference | Naito R, Murofushi T, Mizutani M, Kaga K. 2003. Myelin‐deficiency in the cochlear nerve of the ’bt’ mutant hamster. Hear Res 176: 17 – 24. | |
dc.identifier.citedreference | Nave KA, Werner HB. 2014. Myelination of the nervous system: Mechanisms and functions. Annu Rev Cell Dev Biol 30: 503 – 533. | |
dc.identifier.citedreference | Nelson KR, Gilmore RL, Massey A. 1988. Acoustic nerve conduction abnormalities in Guillain–Barre syndrome. Neurology 38: 1263 – 1266. | |
dc.identifier.citedreference | O’Connor K. 2012. Auditory processing in autism spectrum disorder: A review. Neurosci Biobehav Rev 36: 836 – 854. | |
dc.identifier.citedreference | Rask‐Andersen H, Ekvall L, Scholtz A, Schrott‐Fischer A. 2000. Structural/audiometric correlations in a human inner ear with noise‐induced hearing loss. Hear Res 141: 129 – 139. | |
dc.identifier.citedreference | Roberts MT, Seeman SC, Golding NL. 2013. A mechanistic understanding of the role of feedforward inhibition in the mammalian sound localization circuitry. Neuron 78: 923 – 935. | |
dc.identifier.citedreference | Romand R, Romand MR, Mulle C, Marty R. 1980. Early stages of myelination in the spiral ganglion cells of the kitten during development. Acta oto‐Laryngol 90: 391 – 397. | |
dc.identifier.citedreference | Ropper AH, Chiappa KH. 1986. Evoked potentials in Guillain–Barre syndrome. Neurology 36: 587 – 590. | |
dc.identifier.citedreference | Rosenbluth J. 1962. The fine structure of acoustic ganglia in the rat. J Cell Biol 12: 329 – 359. | |
dc.identifier.citedreference | Rossi G, Robecchi MG, Penna M. 1976. Effects of acoustic trauma on corti’s ganglion. Acta oto‐Laryngol 81: 270 – 277. | |
dc.identifier.citedreference | Roy K, Murtie JC, El‐Khodor BF, Edgar N, Sardi SP, Hooks BM, Benoit‐Marand M, et al. 2007. Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proc Natl Acad Sci USA 104: 8131 – 8136. | |
dc.identifier.citedreference | Rutherford MA, Chapochnikov NM, Moser T. 2012. Spike encoding of neurotransmitter release timing by spiral ganglion neurons of the cochlea. J Neurosci 32: 4773 – 4789. | |
dc.identifier.citedreference | Saliu A, Adise S, Xian S, Kudelska K, Rodriguez‐Contreras A. 2014. Natural and lesion‐induced decrease in cell proliferation in the medial nucleus of the trapezoid body during hearing development. J Comp Neurol 522: 971 – 985. | |
dc.identifier.citedreference | Sanchez del Rey A, Sanchez Fernandez JM. 2006. Development of the human fetal cochlear nerve: A morphometric study. Hear Res 212. 251; author reply 252–253. | |
dc.identifier.citedreference | Sano M, Kaga K, Kuan CC, Ino K, Mima K. 2007. Early myelination patterns in the brainstem auditory nuclei and pathway: MRI evaluation study. Int J Pediatr Otorhinolaryngol 71: 1105 – 1115. | |
dc.identifier.citedreference | Sano M, Kuan CC, Kaga K, Itoh K, Ino K, Mima K. 2008. Early myelination patterns in the central auditory pathway of the higher brain: MRI evaluation study. Int J Pediatr Otorhinolaryngol 72: 1479 – 1486. | |
dc.identifier.citedreference | Schiff JA, Cracco RQ, Cracco JB. 1985. Brainstem auditory evoked potentials in Guillain–Barre syndrome. Neurology 35: 771 – 773. | |
dc.identifier.citedreference | Seidl AH, Rubel EW. 2016. Systematic and differential myelination of axon collaterals in the mammalian auditory brainstem. Glia 64: 487 – 494. | |
dc.identifier.citedreference | Seidl AH, Rubel EW, Harris DM. 2010. Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection. J Neurosci 30: 70 – 80. | |
dc.identifier.citedreference | Sinclair JL, Fischl MJ, Alexandrova O, Hess M, Grothe B, Leibold C, Kopp‐Scheinpflug C. 2017. Sound‐evoked activity influences myelination of brainstem axons in the trapezoid body. J Neurosci. | |
dc.identifier.citedreference | Smith KM, Mecoli MD, Altaye M, Komlos M, Maitra R, Eaton KP, Egelhoff JC, et al. 2011. Morphometric differences in the Heschl’s gyrus of hearing impaired and normal hearing infants. Cereb Cortex 21: 991 – 998. | |
dc.identifier.citedreference | Spangler KM, Warr WB, Henkel CK. 1985. The projections of principal cells of the medial nucleus of the trapezoid body in the cat. J Comp Neurol 238: 249 – 262. | |
dc.identifier.citedreference | Stange‐Marten A, Nabel AL, Sinclair JL, Fischl M, Alexandrova O, Wohlfrom H, Kopp‐Scheinpflug C, et al. 2017. Input timing for spatial processing is precisely tuned via constant synaptic delays and myelination patterns in the auditory brainstem. Proc Natl Acad Sci USA 114: E4851 – E4858. | |
dc.identifier.citedreference | Starr A, Michalewski HJ, Zeng FG, Fujikawa‐Brooks S, Linthicum F, Kim CS, Winnier D, et al. 2003. Pathology and physiology of auditory neuropathy with a novel mutation in the MPZ gene (Tyr145‐>Ser). Brain 126: 1604 – 1619. | |
dc.identifier.citedreference | Steele CJ, Bailey JA, Zatorre RJ, Penhune VB. 2013. Early musical training and white‐matter plasticity in the corpus callosum: Evidence for a sensitive period. J Neurosci 33: 1282 – 1290. | |
dc.identifier.citedreference | Su P, Kuan CC, Kaga K, Sano M, Mima K. 2008. Myelination progression in language‐correlated regions in brain of normal children determined by quantitative MRI assessment. Int J Pediatr Otorhinolaryngol 72: 1751 – 1763. | |
dc.identifier.citedreference | Tagoe T, Barker M, Jones A, Allcock N, Hamann M. 2014. Auditory nerve perinodal dysmyelination in noise‐induced hearing loss. J Neurosci 34: 2684 – 2688. | |
dc.identifier.citedreference | Takazawa T, Ikeda K, Murata K, Kawase Y, Hirayama T, Ohtsu M, Harada H, et al. 2012. Sudden deafness and facial diplegia in Guillain–Barre Syndrome: Radiological depiction of facial and acoustic nerve lesions. Int Med 51: 2433 – 2437. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.