Show simple item record

Evidence of Countergradient Variation in Growth of Spotted Gars from Core and Peripheral Populations

dc.contributor.authorDavid, Solomon R.
dc.contributor.authorKik, Richard S.
dc.contributor.authorDiana, James S.
dc.contributor.authorRutherford, Edward S.
dc.contributor.authorWiley, Michael J.
dc.date.accessioned2018-02-05T16:41:45Z
dc.date.available2018-02-05T16:41:45Z
dc.date.issued2015-07
dc.identifier.citationDavid, Solomon R.; Kik, Richard S.; Diana, James S.; Rutherford, Edward S.; Wiley, Michael J. (2015). "Evidence of Countergradient Variation in Growth of Spotted Gars from Core and Peripheral Populations." Transactions of the American Fisheries Society 144(4): 837-850.
dc.identifier.issn0002-8487
dc.identifier.issn1548-8659
dc.identifier.urihttps://hdl.handle.net/2027.42/141850
dc.description.abstractPeripheral populations occupy the edge of a species’ range and may exhibit adaptations to potentially “harsher” marginal environments compared with core populations. The peripheral population of Spotted Gar Lepisosteus oculatus in the Great Lakes basin represents the northern edge of the species’ range and is completely disjunct from the core Mississippi River basin population. Age‐0 Spotted Gars from the peripheral population experience a growing season approximately half that of the core population but reach similar sizes by winter, suggesting potential for countergradient variation in growth, i.e. an evolutionary response to an environmental gradient such as latitude to compensate for the usual phenotypic effect of that gradient. In this study we used two common garden experiments to investigate potential countergradient variation in growth of young‐of‐year Spotted Gars from peripheral populations in comparison with those from core populations. Our first experiment showed that in a common environment under temperatures within the first growing season (22–24°C), Spotted Gars from the peripheral population had significantly higher growth rates than those from the core population. Final Spotted Gar weight–length ratio was also higher in the peripheral versus core population. In our second experiment, under three temperature treatments (16, 23, and 30°C), maximum growth occurred at the highest temperature, whereas growth ceased at the lowest temperature for both populations. These results suggest that important genetic and physiological differences could exist between the two population groups, consistent with countergradient variation. Our findings indicate that countergradient growth variation can occur even in relatively slowly evolving fishes, such as gars (family Lepisosteidae), and that protection of peripheral populations should be a key component of fish conservation planning.
dc.publisherTaylor & Francis
dc.publisherWiley Periodicals, Inc.
dc.titleEvidence of Countergradient Variation in Growth of Spotted Gars from Core and Peripheral Populations
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141850/1/tafs0837.pdf
dc.identifier.doi10.1080/00028487.2015.1040523
dc.identifier.sourceTransactions of the American Fisheries Society
dc.identifier.citedreferenceD. L., Scarnecchia 1992. A reappraisal of gars and bowfins in fishery management. Fisheries 17 (5): 6 – 12.
dc.identifier.citedreferenceSchultz, E. T., K. E. Reynolds, and D. O. Conover. 1996. Countergradient variation in growth among newly hatched Fundulus heteroclitus: geographic differences revealed by common‐environment experiments. Functional Ecology 10:366–374.
dc.identifier.citedreferenceG. G. E., Scudder 1989. The adaptive significance of marginal populations: a general perspective. Canadian Special Publication of Fisheries and Aquatic Sciences 105: 180 – 185.
dc.identifier.citedreferenceT. P., Simon, and E. J. Tyberghein. 1991. Contributions to the early life history of the Spotted Gar, Lepisosteus oculatus Winchell, from Hatchet Creek, Alabama. Transactions of the Kentucky Academy of Science 52: 124 – 131.
dc.identifier.citedreferenceT. P., Simon, and R. Wallus. 1989. Contributions to the early life histories of gar (Actinopterygii: Lepisosteidae) in the Ohio and Tennessee River basins with emphasis on larval development. Transactions of the Kentucky Academy of Science 50: 59 – 71.
dc.identifier.citedreferenceJ. E., Slaughter IV, R. A. Wright, and D. R. DeVries. 2004. The effects of age‐0 body size and the predictive ability of a Largemouth Bass bioenergetics model. Transactions of the American Fisheries Society 133: 279 – 291.
dc.identifier.citedreferenceJ. E., Slaughter IV, R. A. Wright, and D. R. DeVries. 2008. Latitudinal influence on first‐year growth and survival of Largemouth Bass. North American Journal of Fisheries Management 28: 993 – 1000.
dc.identifier.citedreferenceG. A., Snedden, W. E. Kelso, and D. A. Rutherford. 1999. Diel and seasonal patterns of Spotted Gar movement and habitat use in the lower Atchafalaya River basin, Louisiana. Transactions of the American Fisheries Society 128: 144 – 154.
dc.identifier.citedreferenceS. C., Stearns, and J. C. Koella. 1986. The evolution of phenotypic plasticity in life‐history traits: predictions of reaction norms for age and size at maturity. Evolution 40: 893 – 913.
dc.identifier.citedreferenceR. D., Suttkus 1963. Order Lepisostei. Pages 61 – 88 in H. B. Bigelow, C. M. Breeder, Y. H. Olsen, D. M. Cohen, W. C. Schroeder, G. W. Mead, L. P. Schultz, D. Merriman, and J. Tee‐Van, editors. Fishes of the western North Atlantic; part three, soft‐rayed fishes. Yale University, Memoir Sears Foundation for Marine Research 1, New Haven, Connecticut.
dc.identifier.citedreferenceM. B., Trautman 1981. The Fishes of Ohio, revised edition. Ohio State University Press, Columbus.
dc.identifier.citedreferenceUnited Nations. 1992. Convention on biological diversity. United Nations, New York. Available: http://www.cbd.int/. (June 2015).
dc.identifier.citedreferenceUSEPA (U.S. Environmental Protection Agency). 2007. Biological indicators of watershed health. Available: www.epa.gov/bioiweb1/html/fish_indicators.html. (August 2008).
dc.identifier.citedreferenceE. O., Wiley 1976. The phylogeny and biogeography of fossil and recent gars (Actinopterygii: Lepisosteidae). University of Kansas Museum of Natural History Miscellaneous Publication 64.
dc.identifier.citedreferenceB. S., Wilson, and D. E. Cooke. 2004. Latitudinal variation in rates of overwinter mortality in the lizard Uta stansburiana. Ecology 85: 3406 – 3417.
dc.identifier.citedreferenceS. M., Wisely, S. W. Buskirk, G. A. Russell, K. B. Aubry, and W. J. Zielinski. 2004. Genetic diversity and structure of the fisher (Martes pennanti) in a peninsular and peripheral metapopulation. Journal of Mammalogy 85: 640 – 648.
dc.identifier.citedreferenceJ. J., Wright, S. R. David, and T. J. Near. 2012. Gene trees, species trees, and morphology converge on a similar phylogeny of living gars (Actinopterygii: Holostei: Lepisosteidae), an ancient clade of ray‐finned fishes. Molecular Phylogenetics and Evolution 63: 848 – 856.
dc.identifier.citedreferenceS. B., Yakimowski, and C. G. Eckert. 2007. Threatened peripheral populations in context: geographical variation in population frequency and size and sexual reproduction in a clonal woody shrub. Conservation Biology 21: 811 – 822.
dc.identifier.citedreferenceK., Yamahira, and D. O. Conover. 2002. Intra‐ vs. interspecific latitudinal variation in growth: adaptation to temperature or seasonality? Ecology 83: 1252 – 1262.
dc.identifier.citedreferenceArendt, J. D., and D. S. Wilson. 1997. Optimistic growth: competition and an ontogenetic niche‐shift select for rapid growth in Pumpkinseed Sunfish ( Lepomis gibbosus ). Evolution 51:1946–1954.
dc.identifier.citedreferenceH., Baumann, and D. O. Conover. 2011. Adaptation to climate change: contrasting patterns of thermal‐reaction‐norm evolution in Pacific versus Atlantic silversides. Proceedings of the Royal Society B 278: 2265 – 2273.
dc.identifier.citedreferenceR. M., Bailey, and G. R. Smith. 1981. Origin and geography of the fish fauna of the Laurentian Great Lakes basin. Canadian Journal of Fisheries and Aquatic Sciences 38: 1539 – 1561.
dc.identifier.citedreferenceG. C., Becker 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison.
dc.identifier.citedreferenceD., Berrigan, and J. C. Koella. 1994. The evolution of reaction norms: simple models for age and size at maturity. Journal of Evolutionary Biology 7: 549 – 566.
dc.identifier.citedreferenceJ. M., Billerbeck, T. E. Lankford, and D. O. Conover. 2001. Evolution of intrinsic growth and energy acquisition rates: I. tradeoffs with swimming performance in Menidia menidia. Evolution 55: 1863 – 1872.
dc.identifier.citedreferenceS. M., Carlson, T. P. Quinn, and A. P. Hendry. 2011. Eco‐evolutionary dynamics in Pacific salmon. Heredity 103:438–447.
dc.identifier.citedreferenceS. M., Carman 2002. Special animal abstract for Lepisosteus oculatus (Spotted Gar). Michigan Natural Features Inventory, Lansing.
dc.identifier.citedreferenceR., Channell, and M. V. Lomolino. 2000. Trajectories to extinction: spatial dynamics of the contraction of geographical ranges. Journal of Biogeography 27: 169 – 179.
dc.identifier.citedreferenceD. O., Conover 1990. The relation between capacity for growth and length of growing season: evidence for and implications of countergradient variation. Transactions of the American Fisheries Society 119: 416 – 430.
dc.identifier.citedreferenceConover, D. O. 1992. Seasonality and the scheduling of life history at different latitudes. Journal of Fish Biology 41:161–178.
dc.identifier.citedreferenceD. O., Conover, S. A. Arnott, M. R. Walsh, and S. B. Munch. 2005. Darwinian fishery science: lessons from the Atlantic Silverside (Menidia menidia). Canadian Journal of Fisheries and Aquatic Sciences 62: 730 – 737.
dc.identifier.citedreferenceD. O., Conover, T. A. Duffy, and L. A. Hice. 2009. The covariance between genetic and environmental influences across ecological gradients. Annals of the New York Academy of Sciences 1168: 100 – 129.
dc.identifier.citedreferenceD. O., Conover, and T. M. C. Present. 1990. Countergradient variation in growth rate: compensation for length of the growing season among Atlantic Silversides from different latitudes. Oecologia 83: 316 – 324.
dc.identifier.citedreferenceD. O., Conover, and E. T. Schultz. 1995. Phenotypic similarity and the evolutionary significance of countergradient variation. Trends in Ecology and Evolution 10: 248 – 252.
dc.identifier.citedreferenceS. R., David 2012. Life history, growth, and genetic diversity of the Spotted Gar Lepisosteus oculatus from peripheral and core populations. Doctoral dissertation. University of Michigan, Ann Arbor.
dc.identifier.citedreferenceA. A., Echelle, and C. D. Riggs. 1972. Aspects of the early life history of gars (Lepisosteus) in Lake Texoma. Transactions of the American Fisheries Society 101: 106 – 112.
dc.identifier.citedreferenceA. M., Ferrara 2001. Life‐history strategy of Lepisosteidae: implications for the conservation and management of Alligator Gar. Doctoral dissertation. Auburn University, Auburn, Alabama.
dc.identifier.citedreferenceJ., Fischer, and D. B. Lindenmayer. 2000. An assessment of the published results of animal relocations. Biological Conservation 96: 1 – 11.
dc.identifier.citedreferenceS. J., Foster, and A. C. J. Vincent. 2004. Life history and ecology of seahorses: implications for conservation and management. Journal of Fish Biology 65: 1 – 61.
dc.identifier.citedreferenceA., Garner, J. L. Rachlow, and J. F. Hicks. 2005. Patterns of genetic diversity and its loss in mammalian populations. Conservation Biology 19: 1215 – 1221.
dc.identifier.citedreferenceW. R., Glass, R. P. Walter, D. D. Heath, N. E. Mandrak, and L. D. Corkum. In press. Genetic structure and diversity of Spotted Gar (Lepisosteus oculatus) at its northern range edge: implications for conservation. Conservation Genetics. DOI: 10.1007/s10592‐015‐0708‐2.
dc.identifier.citedreferenceL., Grande 2010. An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy. The resurrection of Holostei. Copeia 2010(American Society of Ichthyologists and Herpetologists Special Publication 6):778.
dc.identifier.citedreferenceE., Heibo, C. Magnhagen, and L. A. Vollestad. 2005. Latitudinal variation in life‐history traits in Eurasian Perch. Ecology 86: 3377 – 3386.
dc.identifier.citedreferenceG. S., Helfman 2007. Fish conservation. Island Press, Washington, D.C.
dc.identifier.citedreferenceC. H., Hocutt, and E. O. Wiley. 1986. The zoogeography of North American freshwater fishes. Wiley, New York.
dc.identifier.citedreferenceR., Holt 1973. Age and growth, length‐weight relationship, condition coefficient, and feeding habits of Spotted Gar, Lepisosteus oculatus (Winchell), within the Kentucky waters of Kentucky Reservoir. Master’s thesis. Murray State University, Murray, Kentucky.
dc.identifier.citedreferenceD. U., Hooper, F. S. Chapin III, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setala, A. J. Symstad, J. Vandermeer, and D. A. Wardle. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3 – 35.
dc.identifier.citedreferenceC. L., Hubbs, K. F. Lagler, and G. R. Smith. 2004. Fishes of the Great Lakes region, revised edition. University of Michigan Press, Ann Arbor.
dc.identifier.citedreferenceT. P., Hurst 2007. Causes and consequences of winter mortality in fishes. Journal of Fish Biology 71: 315 – 345.
dc.identifier.citedreferenceJMP. 2001. JMP, version 4. SAS Institute, Cary, North Carolina.
dc.identifier.citedreferenceK., Johannesson, and C. Andre. 2006. Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Molecular Ecology 15: 2013 – 2029.
dc.identifier.citedreferenceB., Jones, C. Gliddon, and J. E. G. Good. 2001. The conservation of variation in geographically peripheral populations: Lloydia serotina (Liliaceae) in Britain. Biological Conservation 101: 147 – 156.
dc.identifier.citedreferenceC. J., Kyle, and C. Strobeck. 2002. Connectivity of peripheral and core populations of North American wolverines. Journal of Mammalogy 83: 1141 – 1150.
dc.identifier.citedreferenceB., Kynard 1997. Life history, latitudinal patterns, and status of the Shortnose Sturgeon, Acipenser brevirostrum. Environmental Biology of Fishes 48: 319 – 334.
dc.identifier.citedreferenceA., Lammi, P. Siikamaki, and K. Mustajarvi. 2001. Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscaria. Conservation Biology 13: 1069 – 1078.
dc.identifier.citedreferenceR., Lande 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. American Naturalist 142: 911 – 927.
dc.identifier.citedreferenceM. A., Lardies, L. D. Bacigalupe, and F. Bozinovic. 2004. Testing the metabolic cold adaptation hypothesis: an intraspecific latitudinal comparison in the common wood louse. Evolutionary Ecology Research 6: 567 – 578.
dc.identifier.citedreferenceW. C., Latta 2003. Distribution and abundance of Michigan fishes collected 1993–2001. Michigan Department of Natural Resources, Fisheries Research Report, Ann Arbor.
dc.identifier.citedreferenceH., Lee, D. DeAngelis, and H. Koh. 1998. Modeling spatial distribution of the unionid mussels and the core‐satellite hypothesis. Water, Science, and Technology 38: 73 – 79.
dc.identifier.citedreferenceP., Lesica, and F. W. Allendorf. 1995. When are peripheral populations valuable for conservation? Conservation Biology 9: 753 – 760.
dc.identifier.citedreferenceG. W., Luck, G. C. Daily, and P. R. Ehrlich. 2003. Population diversity and ecosystem services. Trends in Ecology and Evolution 18: 331 – 336.
dc.identifier.citedreferenceM. E., Mach, E. J. Sbrocco, L. A. Hice, T. A. Duffy, D. O. Conover, and P. H. Barber. 2011. Regional differentiation and post‐glacial expansion of the Atlantic Silverside, Menidia menidia, an annual fish with high dispersal potential. Marine Biology 158: 515 – 530.
dc.identifier.citedreferenceJ., Marcil, D. P. Swain, and J. A. Hutchings. 2006. Genetic and environmental components of phenotypic variation in body shape among populations of Atlantic Cod (Gadus morhua L.). Biological Journal of the Linnean Society 88: 351 – 365.
dc.identifier.citedreferenceR., Mendoza Alfaro, C. A. Gonzales, and A. M. Ferrara. 2008. Gar biology and culture: status and prospects. Aquaculture Research 39: 748 – 763.
dc.identifier.citedreferenceMichigan Department of Natural Resources. 2005. Species of greatest conservation need. Michigan’s wildlife action plan. State of Michigan, Lansing.
dc.identifier.citedreferenceG. G., Mittelbach, and L. Persson. 1998. The ontogeny of piscivory and its ecological consequences. Canadian Journal of Fisheries and Aquatic Sciences 55: 1454 – 1465.
dc.identifier.citedreferenceS. B., Munch, M. Mangel, and D. O. Conover. 2003. Quantifying natural selection on body size from field data: winter mortality in Menidia menidia. Ecology 84: 2168 – 2177.
dc.identifier.citedreferenceNOAA (National Oceanic and Atmospheric Administration) National Climate Data Center. 2011. U.S. climate normals 1971–2000. Available: http://cdo.ncdc.noaa.gov/cgi‐bin/climatenormals/climatenormals.pl. (February 2011).
dc.identifier.citedreferenceL. M., Page, and B. M. Burr. 1991. A field guide to freshwater fishes. Houghton Mifflin, Boston.
dc.identifier.citedreferenceO. L., Petchey, A. L. Downing, G. G. Mittelbach, L. Persson, C. F. Steiner, P. H. Warren, and G. Woodward. 2004. Species loss and structure and functioning of multitrophic aquatic systems. Oikos 104: 467 – 478.
dc.identifier.citedreferenceM., Power, and R. S. McKinley. 1997. Latitudinal variation in Lake Sturgeon size as related to the thermal opportunity for growth. Transactions of the American Fisheries Society 126: 549 – 558.
dc.identifier.citedreferenceT. M., Present, and D. O. Conover. 1992. Physiological basis of latitudinal growth differences in Menidia menidia: variation in consumption or efficiency? Functional Ecology 6: 23 – 31.
dc.identifier.citedreferenceL. C., Redmond 1964. Ecology of the Spotted Gar (Lepisosteus oculatus Winchell) in southeastern Missouri. Master’s thesis. University of Missouri, Columbia.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.