Show simple item record

Improvements to the APBS biomolecular solvation software suite

dc.contributor.authorJurrus, Elizabeth
dc.contributor.authorEngel, Dave
dc.contributor.authorStar, Keith
dc.contributor.authorMonson, Kyle
dc.contributor.authorBrandi, Juan
dc.contributor.authorFelberg, Lisa E.
dc.contributor.authorBrookes, David H.
dc.contributor.authorWilson, Leighton
dc.contributor.authorChen, Jiahui
dc.contributor.authorLiles, Karina
dc.contributor.authorChun, Minju
dc.contributor.authorLi, Peter
dc.contributor.authorGohara, David W.
dc.contributor.authorDolinsky, Todd
dc.contributor.authorKonecny, Robert
dc.contributor.authorKoes, David R.
dc.contributor.authorNielsen, Jens Erik
dc.contributor.authorHead‐gordon, Teresa
dc.contributor.authorGeng, Weihua
dc.contributor.authorKrasny, Robert
dc.contributor.authorWei, Guo‐wei
dc.contributor.authorHolst, Michael J.
dc.contributor.authorMcCammon, J. Andrew
dc.contributor.authorBaker, Nathan A.
dc.date.accessioned2018-02-05T16:42:19Z
dc.date.available2019-03-01T21:00:18Zen
dc.date.issued2018-01
dc.identifier.citationJurrus, Elizabeth; Engel, Dave; Star, Keith; Monson, Kyle; Brandi, Juan; Felberg, Lisa E.; Brookes, David H.; Wilson, Leighton; Chen, Jiahui; Liles, Karina; Chun, Minju; Li, Peter; Gohara, David W.; Dolinsky, Todd; Konecny, Robert; Koes, David R.; Nielsen, Jens Erik; Head‐gordon, Teresa ; Geng, Weihua; Krasny, Robert; Wei, Guo‐wei ; Holst, Michael J.; McCammon, J. Andrew; Baker, Nathan A. (2018). "Improvements to the APBS biomolecular solvation software suite." Protein Science 27(1): 112-128.
dc.identifier.issn0961-8368
dc.identifier.issn1469-896X
dc.identifier.urihttps://hdl.handle.net/2027.42/141870
dc.description.abstractThe Adaptive Poissonâ Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that have provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses the three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this article, we discuss the models and capabilities that have recently been implemented within the APBS software package including a Poissonâ Boltzmann analytical and a semiâ analytical solver, an optimized boundary element solver, a geometryâ based geometric flow solvation model, a graph theoryâ based algorithm for determining pKa values, and an improved webâ based visualization tool for viewing electrostatics.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othersolvation
dc.subject.othersoftware
dc.subject.otherelectrostatics
dc.subject.othertitration
dc.subject.otherpKa
dc.titleImprovements to the APBS biomolecular solvation software suite
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141870/1/pro3280_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141870/2/pro3280.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141870/3/pro3280-sup-0001-suppinfo01.pdf
dc.identifier.doi10.1002/pro.3280
dc.identifier.sourceProtein Science
dc.identifier.citedreferenceMGLTools (AutoDock, PMV, Vision) website. URL: http://mgltools.scripps.edu/.
dc.identifier.citedreferenceJuffer AH, Botta EFF, van Keulen BAM, van der Ploeg A, Berendsen HJC ( 1991 ) The electric potential of a macromolecule in a solvent: a fundamental approach. J Comput Phys 97: 144 â 171.
dc.identifier.citedreferenceSanner M, Olson A, Spehner JC. Fast and robust computation of molecular surfaces. In: Proc 11th ACM Symp Comp Geom. ACM. 1995, pp. C6 â C7.
dc.identifier.citedreferenceDecherchi S, Rocchia W ( 2013 ) A general and robust rayâ castingâ based algorithm for triangulating surfaces at the nanoscale. PLoS ONE 8: e59744.
dc.identifier.citedreferenceHumphrey W, Dalke A, Schulten K ( 1996 ) VMD: visual molecular dynamics. J Mol Graphics 14: 33 â 38, 27â 28.
dc.identifier.citedreferenceBashford D, Case DA ( 2000 ) Generalized Born models of macromolecular salvation effects. Annu Rev Phys Chem 51: 129 â 152. doi: 10.1146/annurev.physchem. 51.1.129.
dc.identifier.citedreferenceErmak D, McCammon JA ( 1978 ) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69: 1352 â 1360.
dc.identifier.citedreferenceSchrödinger LLC ( 2015 ) The PyMOL Molecular Graphics System, Version 1.8. PyMOL.
dc.identifier.citedreferenceâ PyMOL websiteâ . URL: http://www.pymol.org.
dc.identifier.citedreferenceâ VMD websiteâ . URL: http://www.ks.uiuc.edu/Research/vmd/.
dc.identifier.citedreferenceJohnson GT, Autin L, Goodsell DS, Sanner MF, Olson AJ ( 2011 ) ePMV embeds molecular modeling into professional animation software environments. Structure 19: 293 â 303.
dc.identifier.citedreferenceChimera website. URL: https://www.cgl.ucsf.edu/chimera/.
dc.identifier.citedreferencePettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E, Ferrin T ( 2004 ) UCSF Chimeraâ a visualization system for exploratory research and analysis. J Comput Chem 25: 1605 â 1612. doi: 10.1002/jcc.20084.
dc.identifier.citedreferenceJmol website. URL: http://jmol.sourceforge.net/.
dc.identifier.citedreferenceHerraez A ( 2006 ) Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ 34: 255 â 261.
dc.identifier.citedreferenceKoes D. 3Dmol.js. url: http://3dmol.csb.pitt.edu/ (visited on 2016 ).
dc.identifier.citedreferenceRego N, Koes D ( 2015 ) 3Dmol.js: molecular visualization with WebGL. Bioinformatics 31: 1322 â 1324.
dc.identifier.citedreferenceUnni S, Huang Y, Hanson RM, Tobias M, Krishnan S, Li WW, Nielsen JE, Baker NA ( 2011 ) Web servers and services for electrostatics calculations with APBS and PDB2PQR. J Comput Chem 32: 1488 â 1491. doi: 10.1002/jcc.21720.
dc.identifier.citedreferenceDror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow DH, Canals M, Lane JR, Rahmani R, Baell JB, Sexton PM, Christopoulos A, Shaw DE ( 2013 ) Structural basis for modulation of a Gâ proteinâ coupled receptor by allosteric drugs. Nature 503: 295 â 299.
dc.identifier.citedreferenceTreuel L, Brandholt S, Maffre P, Wiegele S, Shang L, Nienhaus G ( 2013 ) Impact of protein modification on the protein corona on nanoparticles and nanoparticleâ cell interactions. ACS Nano 8: 503 â 513.
dc.identifier.citedreferenceDe Paoli SH, Diduch L, Tegegn T, Orecna M, Strader M, Karnaukhova E, Bonevich J, Holada K, Simak J ( 2014 ) The effect of protein corona composition on the interaction of carbon nanotubes with human blood platelets. Biomaterials 35: 6182 â 6194. ISSN: 0142â 9612.
dc.identifier.citedreferenceLipfert J, Doniach S, Das R, Herschlag D ( 2014 ) Understanding nucleic acidâ ion interactions. Annu Rev Biochem 83: 813 â 841. doi: 10.1146/annurevâ biochemâ 060409â 092720.
dc.identifier.citedreferenceRoberts V, Thompson E, Pique M, Perez M, Ten Eyck L ( 2013 ) DOT2: macromolecular docking with improved biophysical models. J Comput Chem 34: 1743 â 1758. doi: 10.1002/jcc.23304.
dc.identifier.citedreferenceEvangelidis T, Bourne P, Xie L, Xie L ( 2009 ) An integrated workflow for proteomeâ wide offâ target identification and polypharmacology drug design. In: International Conference on Bioinformatics and Biomedicine Workshops. IEEE. pp. 32â 39. doi: 2010.1109/BIBMW.2012.6470348.
dc.identifier.citedreferenceSpiga E, Alemani D, Degiacomi M, Cascella M, Peraro M ( 2013 ) Electrostaticâ consistent coarseâ grained potentials for molecular simulations of proteins. J Chem Theory Comput 9: 3515 â 3526. doi: 10.1021/ct400137q.
dc.identifier.citedreferenceStansfeld PJ, Goose JE, Caffrey M, Carpenter EP, Parker JL ( 2015 ) MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure 23: 1350 â 1361.
dc.identifier.citedreferenceRichter S, Wenzel A, Stein M, Gabdoulline R, Wade R ( 2008 ) webPIPSA: a web server for the comparison of protein interaction properties. Nucleic Acids Res 36: W276 â W280. doi: 10.1093/nar/gkn181.
dc.identifier.citedreferenceMartinez M, Bruce N, Romanowska J, Kokh D, Ozboyaci M, Yu X, à ztürk M, Richter S, Wade R ( 2015 ) SDA 7: a modular and parallel implementation of the simulation of diffusional association software. J Comput Chem 36: 1631 â 1645. doi: 10.1002/jcc.23971.
dc.identifier.citedreferenceCheng Y, Suen JK, Zhang D, Bond SD, Zhang Y, Song Y, Baker NA, Bajaj C, Holst MJ, McCammon JA ( 2007 ) Finite element analysis of the timeâ dependent Smoluchowski equation for acetylcholinesterase reaction rate calculations. Biophys J 92: 3397 â 3406. doi: 10.1529/biophysj.106.102533.
dc.identifier.citedreferenceCheng Y, Suen JK, Radic Z, Bond SD, Holst MJ, McCammon JA ( 2007 ) Continuum simulations of acetylcholine diffusion with reactionâ determined boundaries in neuromuscular junction models. Biophys Chem 127: 129 â 139. doi: 10.1016/j.bpc.2007.01.003.
dc.identifier.citedreferenceSong Y, Zhang Y, Bajaj C, Baker NA ( 2004 ) Continuum diffusion reaction rate calculations of wildâ type and mutant mouse acetylcholinesterase: adaptive finite element analysis. Biophys J 87: 1558 â 1566.
dc.identifier.citedreferenceElcock AH ( 2004 ) Molecular simulations of diffusion and association in multimacromolecular systems. Methods Enzymol 383: 166 â 198. doi: 10.1016/S0076â 6879(04)83008â 8.
dc.identifier.citedreferenceMereghetti P, Wade RC ( 2012 ) Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions. J Phys Chem 116: 8523 â 8533. p
dc.identifier.citedreferenceHolst MJ Clean Objectâ Oriented C. URL: http://fetk.org/codes/maloc/api/html/index.html.
dc.identifier.citedreferenceGilson MK, Sharp KA, Honig BH ( 1988 ) Calculating the electrostatic potential of molecules in solution: method and error assessment. J Comput Chem 9: 327 â 335. doi: 10.1002/jcc.540090407.
dc.identifier.citedreferenceIm W, Beglov D, Roux B ( 1998 ) Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poissonâ Boltzmann equation. Comput Phys Commun 111: 59 â 75.
dc.identifier.citedreferenceSchnieders MJ, Baker NA, Ren P, Ponder JW ( 2007 ) Polarizable atomic multipole solutes in a Poissonâ Boltzmann continuum. J Chem Phys 126: 124114.
dc.identifier.citedreferenceBruccoleri RE, Novotny J, Davis ME, Sharp KA ( 1997 ) Finite difference Poissonâ Boltzmann electrostatic calculations: increased accuracy achieved by harmonic dielectric smoothing and charge antialiasing. J Comput Chem 18: 268 â 276.
dc.identifier.citedreferenceNina M, Im W, Roux B ( 1999 ) Optimized atomic radii for protein continuum electrostatics solvation forces. Biophys Chem 78: 89 â 96. doi: 10.1016/S0301â 4622(98)00236â 1.
dc.identifier.citedreferenceThomas DG, Chun J, Chen Z, Wei G, Baker NA ( 2013 ) Parameterization of a geometric flow implicit solvation model. J Comput Chem 34: 687 â 695. doi: 10.1002/jcc.23181.
dc.identifier.citedreferenceSaad Y, Schultz M ( 1986 ) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. J Sci Stat Comput 7: 856 â 869.
dc.identifier.citedreferenceOpenDX. http://fetk.org/codes/maloc/api/html/index.html. url: http://www.opendx.org/.
dc.identifier.citedreferenceAhrens J, Geveci B, Law C ( 2005 ) ParaView: an endâ user tool for large data visualization. Elsevier.
dc.identifier.citedreferenceRen P, Chun J, Thomas DG, Schnieders MJ, Marucho M, Zhang J, Baker NA ( 2012 ) Biomolecular electrostatics and solvation: a computational perspective. Quarter Rev Biophys 45: 427 â 491. doi: 10.1017/S003358351200011X.
dc.identifier.citedreferenceDavis ME, McCammon JA ( 1990 ) Electrostatics in biomolecular structure and dynamics. Chem Rev 90: 509 â 521.
dc.identifier.citedreferencePerutz MF ( 1978 ) Electrostatic effects in proteins. Science 201: 1187 â 1191.
dc.identifier.citedreferenceSharp KA, Honig B ( 1990 ) Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem 19: 301 â 332. doi: 10.1146/annurev.bb.19.060190.001505.
dc.identifier.citedreferenceRoux B, Simonson T ( 1999 ) Implicit solvent models. Biophys Chem 78: 1 â 20.
dc.identifier.citedreferenceWarshel A, Sharma PK, Kato M, Parson WW ( 2006 ) Modeling electrostatic effects in proteins. Biochim Biophys Acta 1764: 1647 â 1676. doi: 10.1016/j.bbapap.2006.08.007.
dc.identifier.citedreferenceFixman M ( 1979 ) The Poissonâ Boltzmann equation and its application to polyelectrolytes. J Chem Phys 70: 4995 â 5005.
dc.identifier.citedreferenceGrochowski P, Trylska J ( 2008 ) Continuum molecular electrostatics, salt effects, and counterion bindingâ a review of the Poissonâ Boltzmann theory and its modifications. Biopolymers 89: 93 â 113. doi: 10.1002/bip.20877.
dc.identifier.citedreferenceLamm G, Lipkowitz KB, Larter R, Cundari TR, Boyd DB ( 2003 ) The Poissonâ Boltzmann equation. Rev Comput Chem 19: 147 â 365.
dc.identifier.citedreferenceLee B, Richards FM ( 1971 ) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55: 379 â 400. doi: 10.1016/0022â 2836(71)90324â X.
dc.identifier.citedreferenceNetz RR, Orland H ( 2000 ) Beyond Poissonâ Boltzmann: fluctuation effects and correlation functions. Eur Phys J E Soft Matter 1: 203 â 214.
dc.identifier.citedreferenceBrooks B, Brooks A, Mackerell CL, Nilsson L, Petrella R, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M ( 2009 ) CHARMM: the biomolecular simulation program. J Comput Chem 30: 1545 â 1614. doi: 10.1002/jcc.21287.
dc.identifier.citedreferenceCase D, Cheatham T, Darden T, Gohlke H, Luo R, Merz K, Onufriev A, Simmerling C, Wang B, Woods R ( 2005 ) The AMBER biomolecular simulation programs. J Comput Chem 26: 1668 â 1688. doi: 10.1002/jcc.20290.
dc.identifier.citedreferenceLi L, Li C, Sarkar S, Zhang J, Witham S, Zhang Z, Wang L, Smith N, Petukh M, and Alexov E ( 2012 ) DelPhi: a comprehensive suite for DelPhi software and associated resources. BMC Biophys 5: 9. doi: 10.1186/2046-1682-5-9.
dc.identifier.citedreferenceBochevarov A, Harder E, Hughes T, Greenwood J, Braden D, Philipp D, Rinaldo D, Halls M, Zhang J, Friesner R ( 2013 ) Jaguar: a highâ performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113: 2110 â 2142.
dc.identifier.citedreferenceGrant JA, Pickup BT, Nicholls A ( 2001 ) A smooth permittivity function for Poissonâ Boltzmann solvation methods. J Comput Chem 22: 608 â 640.
dc.identifier.citedreferenceZhou YC, Feig M, Wei GW ( 2008 ) Highly accurate biomolecular electrostatics in continuum dielectric environments. J Comput Chem 29: 87â 87. doi: 10.1002/jcc.20769.
dc.identifier.citedreferenceBaker NA, Sept D, Joseph S, Holst MJ, McCammon JA ( 2001 ) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98: 10037 â 10041. doi: 10.1073/pnas.181342398.
dc.identifier.citedreferenceâ APBS websiteâ . URL: http://www.poissonboltzmann.org/.
dc.identifier.citedreferenceKrishnan S, Clementi L, Ren J, Papadopoulos P, Li W â Design and evaluation of Opal2: A toolkit for scientific software as a serviceâ . In: Servicesâ I, 2009 World Conference on IEEE. 2009, pp. 709â 716. url: http://nbcr-222.ucsd.edu/opal2/dashboard.
dc.identifier.citedreferencePhillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K ( 2005 ) Scalable molecular dynamics with NAMD. J Comput Chem 26: 1781 â 1802. p doi: 10.1002/jcc.20289.
dc.identifier.citedreferenceBaker D. Rosetta website. url: https://www.rosettacommons.org/.
dc.identifier.citedreferencePonder J. TINKER website. url: https://dasher.wustl.edu/tinker/.
dc.identifier.citedreferenceKonecny R, Baker NA, McCammon JA ( 2012 ) iAPBS: a programming interface to Adaptive Poissonâ Boltzmann Solver (APBS). Comput Sci Disc 5: 015005. doi: 10.1088/1749â 4699/5/1/.
dc.identifier.citedreferenceiAPBS website. url: https://mccammon.ucsd.edu/iapbs/.
dc.identifier.citedreferenceHolst M, Baker N, Wang F ( 2000 ) Adaptive multilevel finite element solution of the Poissonâ Boltzmann equation I. Algorithms and examples. J Comput Chem 21: 1319 â 1342.
dc.identifier.citedreferenceBaker N, Holst M, Wang F ( 2000 ) Adaptive multilevel finite element solution of the Poissonâ Boltzmann equation II. Refinement at solventâ accessible surfaces in biomolecular systems. J Comput Chem 21: 1343 â 1352.
dc.identifier.citedreferenceBaker NA, Sept D, Holst MJ, McCammon JA ( 2001 ) The adaptive multilevel finite element solution of the Poissonâ Boltzmann equation on massively parallel computers. IBM J Res Dev 45: 427 â 438.
dc.identifier.citedreferenceLotan I, Headâ Gordon T ( 2006 ) An analytical electrostatic model for salt screened interactions between multiple proteins. J Chem Theory Comput 2: 541 â 555. PMID: 26626662, doi: 10.1021/ct050263p.
dc.identifier.citedreferenceFeldberg LE, Brookes DH, Yap EH, Jurrus E, Baker NA, Headâ Gordon T ( 2017 ) PBâ AM: An openâ source, fully analytical linear Poissonâ Boltzmann solver. J Comput Chem 38: 1275 â 1282. doi: 10.1002/jcc.24528.
dc.identifier.citedreferenceYap Eâ H, Headâ Gordon T ( 2010 ) New and efficient Poissonâ Boltzmann solver for interaction of multiple proteins. J Chem Theory Comput 6: 2214 â 2224. doi: 10.1021/ct100145f.
dc.identifier.citedreferenceHuber GA, McCammon JA ( 2010 ) Browndye: a software package for Brownian dynamics. Comput Phys Commun 181: 1896 â 1905. doi: 10.1016/j.cpc.2010.07.022.
dc.identifier.citedreferenceYap EH, Headâ Gordon T ( 2013 ) Calculating the bimolecular rate of proteinâ protein association with interacting crowders. J Chem Theory Comput 9: 2481 â 2489. issn: 1549â 9618 (Print) 1549â 9618 (Linking). doi: 10.1021/ct400048q.
dc.identifier.citedreferenceBashford D An objectâ oriented programming suite for electrostatic effects in biological molecules. In: Ishikawa Y, et al., Ed. ( 1997 ) Scientific computing in objectâ oriented parallel environments. Lecture notes in computer science, Vol. 1343. Berlin: Springer, pp 233 â 240.
dc.identifier.citedreferenceMorris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ ( 2009 ) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30: 2785 â 2791.
dc.identifier.citedreferenceProtein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version 3.3. url: http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html. 2012.
dc.identifier.citedreferencePDBx/mmCIF Dictionary Resources. url: http://mmcif.wwpdb.org/.
dc.identifier.citedreferenceWestbrook J, Ito N, Nakamura H, Henrick K, Berman HM ( 2005 ) PDBML: the representation of archival macromolecular structure data in XML. Bioinformatics 21: 988 â 992. doi: 10.1093/bioinformatics/bti082.
dc.identifier.citedreferenceDolinsky TJ, Nielsen JE, McCammon JA, Baker NA ( 2004 ) PDB2PQR: an automated pipeline for the setup of Poissonâ Boltzmann electrostatics calculations. Nucleic Acids Res 32: W665 â W667.
dc.identifier.citedreferenceDolinsky TJ, Czodrowski P, Hui L, Nielsen JE, Jensen JH, Klebe G, Baker NA ( 2007 ) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35: W522 â W525. doi: 10.1093/nar/gkm276.
dc.identifier.citedreferenceSøndergaard CR, Olsson MHM, Rostkowski M, Jensen JH ( 2011 ) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of p K a values. J Chem Theory Comput 7: 2284 â 2295.
dc.identifier.citedreferenceLi H, Robertson AD, Jensen JH ( 2005 ) Very fast empirical prediction and rationalization of protein pK a values. Proteins 61: 704 â 721.
dc.identifier.citedreferencePurvine E, Monson K, Jurrus E, Starr K, Baker NA ( 2016 ) Energy minimization of discrete protein titration state models using graph theory. J Phys Chem 120: 8354 â 8360. doi: 10.1021/acs.jpcb.6b02059.
dc.identifier.citedreferenceNielsen JE, Vriend G ( 2001 ) Optimizing the hydrogenâ bond network in Poissonâ Boltzmann equationâ based pK a calculations. Proteins 43: 403 â 412.
dc.identifier.citedreferenceWang J, Cieplak P, Kollman PA ( 2000 ) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21: 1049 â 1074. doi: 10. 1002/1096â 987X(200009)21:12â <â 1049::AIDâ JCC3â >â 3.0.CO;2â F.
dc.identifier.citedreferenceMacKerell AD, Jr., Feig M, Brooks CL III ( 2004 ) Extending the treatment of backbone energetics in protein force fields: limitations of gasâ phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25: 1400 â 1415. doi: 10.1002/jcc.20065.
dc.identifier.citedreferenceSitkoff D, Sharp KA, Hong B ( 1994 ) Accurate calculation of hydration free energies using macroscopic solvation models. J Phys Chem 98: 1978 â 1988.
dc.identifier.citedreferenceCzodrowski P, Dramburg I, Sotriffer CA, Klebe G ( 2006 ) Development, validation, and application of adapted PEOE charges to estimate pK a values of functional groups in proteinâ ligand complexes. Proteins 65: 424 â 437. issn: 1097â 0134. doi: 10.1002/prot.21110.
dc.identifier.citedreferenceSwanson JMJ, Adcock SA, McCammon JA ( 2005 ) Optimized radii for Poissonâ Boltzmann calculations with the AMBER force field. J Chem Theory Comput 1: 484 â 493. doi: 10.1021/ct049834o.
dc.identifier.citedreferenceChunhu T, Lijiang Y, Ray L ( 2006 ) How well does Poissonâ Boltzmann implicit solvent agree with explicit solvent? A quantitative analysis. J Phys Chem B 110: 18680 â 18687. issn: 1520â 6106. doi: 10. 1021/jp063479b.
dc.identifier.citedreferenceHolst M ( 2001 ) Adaptive numerical treatment of elliptic systems on manifolds. J Comput Math 15: 139 â 191.
dc.identifier.citedreferenceFEtk website. url: http://www.fetk.org.
dc.identifier.citedreferenceTai K, Bond SD, MacMillan HR, Baker NA, Holst MJ, McCammon JA ( 2003 ) Finite element simulations of acetylcholine diffusion in neuromuscular junctions. Biophys J 84: 2234 â 2241. doi: 10.1016/S0006â 3495(03)75029â 2.
dc.identifier.citedreferenceHolst M, Saied F ( 1993 ) Multigrid solution of the Poissonâ Boltzmann equation. J Comput Chem 14: 105 â 113. doi: 10.1002/jcc.540140114.
dc.identifier.citedreferenceChen Z, Baker NA, Wei GW ( 2010 ) Differential geometry based solvation model I: Eulerian formulation. J Comput Phys 229: 8231 â 8258. doi: 10.1016/j.jcp.2010.06.036.
dc.identifier.citedreferenceChen Z, Baker NA, Wei GW ( 2011 ) Differential geometry based solvation model II: Lagrangian formulation. J Math Biol 63: 1139 â 1200. doi: 10.1007/s00285â 011â 0402â z.
dc.identifier.citedreferenceChen Z, Zhao S, Chun J, Thomas DG, Baker NA, Bates PW, Wei GW ( 2012 ) Variational approach for nonpolar solvation analysis. J Chem Phys 137: 084101. doi: 10.1063/1.4745084.
dc.identifier.citedreferenceDaily MD, Chun J, Herediaâ Langner A, Wei G, Baker NA. ( 2013 ) Origin of parameter degeneracy and molecular shape relationships in geometricâ flow calculations of solvation free energies. J Chem Phys 139: 204108. doi: 10.1063/1.4832900.
dc.identifier.citedreferenceThomas DG, Gaheen S, Harper SL, Fritts M, Klaessig F, Hahn-Dantona E, Paik D, Pan S, Stafford GA, Freund ET, Klemm JD, Baker NA ( 2013 ) ISAâ TABâ Nano: a specification for sharing nanomaterial research data in spreadsheetâ based format. BMC Biotechnol 13: 2. doi: 10.1186/1472â 6750â 13â 2.
dc.identifier.citedreferenceGeng W, Krasny R ( 2013 ) A treecodeâ accelerated boundary integral Poissonâ Boltzmann solver for electrostatics of solvated biomolecules. J Comput Phys 247: 62 â 78.
dc.identifier.citedreferenceLi P, Johnston H, Krasny R ( 2009 ) A Cartesian treecode for screened Coulomb interactions. J Comput Phys 228: 3858 â 3868.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.