Show simple item record

Disparity, diversity, and duplications in the Caryophyllales

dc.contributor.authorSmith, Stephen A.
dc.contributor.authorBrown, Joseph W.
dc.contributor.authorYang, Ya
dc.contributor.authorBruenn, Riva
dc.contributor.authorDrummond, Chloe P.
dc.contributor.authorBrockington, Samuel F.
dc.contributor.authorWalker, Joseph F.
dc.contributor.authorLast, Noah
dc.contributor.authorDouglas, Norman A.
dc.contributor.authorMoore, Michael J.
dc.date.accessioned2018-02-05T16:42:25Z
dc.date.available2019-03-01T21:00:18Zen
dc.date.issued2018-01
dc.identifier.citationSmith, Stephen A.; Brown, Joseph W.; Yang, Ya; Bruenn, Riva; Drummond, Chloe P.; Brockington, Samuel F.; Walker, Joseph F.; Last, Noah; Douglas, Norman A.; Moore, Michael J. (2018). "Disparity, diversity, and duplications in the Caryophyllales." New Phytologist 217(2): 836-854.
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttps://hdl.handle.net/2027.42/141874
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherCaryophyllales
dc.subject.otherphylogenomics
dc.subject.otherduplications
dc.subject.otherdiversification rates
dc.subject.otherclimatic occupancy
dc.titleDisparity, diversity, and duplications in the Caryophyllales
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141874/1/nph14772_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141874/2/nph14772.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141874/3/nph14772-sup-0001-SupInfo.pdf
dc.identifier.doi10.1111/nph.14772
dc.identifier.sourceNew Phytologist
dc.identifier.citedreferenceSmith SA, Beaulieu JM, Donoghue MJ. 2009. Mega‐phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evolutionary Biology 9: 37.
dc.identifier.citedreferenceOtto SP, Whitton J. 2000. Polyploid incidence and evolution. Annual Review of Genetics 34: 401 – 437.
dc.identifier.citedreferencePennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, Fitzjohn RG, Alfaro ME, Harmon LJ. 2014. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30: 2216 – 2218.
dc.identifier.citedreferencePuttick MN, Clark J, Donoghue P. 2015. Size is not everything: rates of genome size evolution, not C‐value, correlate with speciation in angiosperms. Proceedings of the Royal Society of London B: Biological sciences 282: 20152289.
dc.identifier.citedreferenceSanderson MJ. 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19: 301 – 302.
dc.identifier.citedreferenceSchranz E, Mohammadin S, Edger PP. 2012. Ancient whole genome duplications, novelty and diversification: the WGD radiation lag‐time model. Current Opinion in Plant Biology 15: 147 – 153.
dc.identifier.citedreferenceSchubert I, Vu GTH. 2016. Genome stability and evolution: attempting a holistic view. Trends in Plant Sciences 21: 749 – 757.
dc.identifier.citedreferenceSchuster TM, Setaro SD, Kron KA. 2013. Age estimates for the buckwheat family Polygonaceae based on sequence data calibrated by fossils and with a focus on the amphi‐pacific Muehlenbeckia. PLoS ONE 8: e61261.
dc.identifier.citedreferenceSmith SA, Beaulieu JM, Stamatakis A, Donoghue MJ. 2011. Understanding angiosperm diversification using small and large phylogenetic trees. American Journal of Botany 98: 404 – 414.
dc.identifier.citedreferenceSmith SA, Donoghue MJ. 2008. Rates of molecular evolution are linked to life history in flowering plants. Science 322: 86 – 89.
dc.identifier.citedreferenceSmith SA, Moore MJ, Brown JW, Yang Y. 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evolutionary Biology 15: 150.
dc.identifier.citedreferenceSmith SA, O’Meara BC. 2012. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28: 2689 – 2690.
dc.identifier.citedreferenceSoltis PS, Liu X, Marchant DB, Visger CJ, Soltis DE. 2014. Polyploidy and novelty: Gottlieb’s legacy. Philosophical Transactions of the Royal Society of London B: Biological Sciences 369: 20130351.
dc.identifier.citedreferenceSoltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio‐Rodriguez NF, Walker JB, Moore MJ, Carlsward BS et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704 – 730.
dc.identifier.citedreferenceSoltis PS, Soltis DS. 2000. The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences, USA 97: 7051 – 7057.
dc.identifier.citedreferenceStamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics 30: 1312 – 1313.
dc.identifier.citedreferenceStorchová Z, Breneman A, Cande J, Dunn J, Burbank K, O’toole E, Pellman D. 2006. Genome‐wide genetic analysis of polyploidy in yeast. Nature 443: 541.
dc.identifier.citedreferenceSuyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34: W609 – W612.
dc.identifier.citedreferenceTank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, Brown JW, Sessa EB, Harmon LJ. 2015. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytologist 207: 454 – 467.
dc.identifier.citedreferenceThulin M, Moore AJ, El‐Seedi H, Larsson A, Christin P‐A, Edwards EJ. 2016. Phylogeny and generic delimitation in Molluginaceae, new pigment data in Caryophyllales, and the new family Corbichoniaceae. Taxon 65: 775 – 793.
dc.identifier.citedreferenceValente LM, Britton AW, Powell MP, Papadopulos AST, Burgoyne PM, Savolainen V. 2014. Correlates of hyperdiversity in southern African ice plants (Aizoaceae). Botanical Journal of the Linnean Society 174: 110 – 129.
dc.identifier.citedreferenceWalker JF, Yang Y, Moore MJ, Mikenas J, Timoneda A, Brockington SF, Smith SA. 2017. Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the carnivorous Caryophyllales. American Journal of Botany 104: 858 – 867.
dc.identifier.citedreferenceWeiss H, Dobes C, Schneeweiss GM, Greimler J. 2002. Occurrence of tetraploid and hexaploid cytotypes between and within populations in Dianthus sect. Plumaria (Caryophyllaceae). New Phytologist 156: 85 – 94.
dc.identifier.citedreferenceWood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, USA 106: 13875 – 13879.
dc.identifier.citedreferenceYang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24: 1586 – 1591.
dc.identifier.citedreferenceYang Y, Moore MJ, Brockington SF, Mikenas J, Olivieri J, Walker JF, Smith SA. 2017. Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. bioRxiv doi: 10.1101/143529.
dc.identifier.citedreferenceYang Y, Moore MJ, Brockington SF, Soltis DE, Wong GK‐S, Carpenter EJ, Zhang Y, Chen L, Yan Z, Xie Y et al. 2015. Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Molecular Biology and Evolution 32: 2001 – 2014.
dc.identifier.citedreferenceZetter R, Hofmann CC, Draxler I, Durango de Cabrera J, Del MVergel M, Vervoorst F. 1999. A rich middle Eocene microflora at Arroyo de los Mineros, near Cañadón Beta, NE Tierra del Fuego province, Argentina. Abhandlungen der Geologischen Bundesanstalt 56: 439 – 460.
dc.identifier.citedreferenceAlfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences, USA 106: 13410 – 13414.
dc.identifier.citedreferenceArakaki M, Christin PA, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ. 2011. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proceedings of the National Academy of Sciences, USA 108: 8379 – 8384.
dc.identifier.citedreferenceArrigo N, Barker MS. 2012. Rarely successful polyploids and their legacy in plants genomes. Current Opinion in Plant Biology 15: 140 – 146.
dc.identifier.citedreferenceBarker MS, Husband BC, Pires JC. 2016. Spreading Winge and flying high: the evolutionary importance of polyploidy after a century of study. American Journal of Botany 103: 1139 – 1145.
dc.identifier.citedreferenceBarker MS, Vogel H, Schranz ME. 2009. Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biology and Evolution 1: 391 – 399.
dc.identifier.citedreferenceBell CD, Soltis DE, Soltis PS. 2010. The age and diversification of the angiosperms re‐revisited. American Journal of Botany 97: 1296 – 1303.
dc.identifier.citedreferenceBrochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R. 2004. Polyploidy in arctic plants. Biological Journal of the Linnean Society 82: 521 – 536.
dc.identifier.citedreferenceLevin DA. 1983. Polyploidy and novelty in flowering plants. American Naturalist 122: 1 – 25.
dc.identifier.citedreferenceBrockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis DE, Soltis PS. 2009. Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. International Journal of Plant Sciences 170: 627 – 643.
dc.identifier.citedreferenceBrockington SF, Yang Y, Gandia‐Herrero F, Covshoff S, Hibberd JM, Sage RF, Wong GK, Moore MJ, Smith SA. 2015. Lineage‐specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytologist 207: 1170 – 1180.
dc.identifier.citedreferenceBrown JW, Walker JF, Smith SA. 2017. phyx: phylogenetic tools for Unix. Bioinformatics 33: 1886 – 1888.
dc.identifier.citedreferenceBurnham KP, Anderson DR. 2002. Model selection and multimodel inference. New York, NY, USA: Springer.
dc.identifier.citedreferenceCarolin RC. 1954. Stomatal size, density and morphology in the genus Dianthus. Kew Bulletin 9: 251 – 258.
dc.identifier.citedreferenceCevallos‐Ferriz SRS, Estrada‐Ruiz E, Perez‐Hernandez BR. 2008. Phytolaccaceae infructescence from Cerro del Pueblo formation, upper Cretaceous (late Campanian), Coahuila, Mexico. American Journal of Botany 95: 77 – 83.
dc.identifier.citedreferenceChase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1 – 20.
dc.identifier.citedreferenceClavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H et al. 2017. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research 27: 885 – 896.
dc.identifier.citedreferenceComai L. 2005. The advantages and disadvantages of being polyploid. Nature Review Genetics 6: 836 – 846.
dc.identifier.citedreferenceDegreef JD. 1997. Fossil Aldrovanda. Carnivorous Plant Newsletter 26: 93 – 97.
dc.identifier.citedreferenceDodsworth S, Chase M, Leitch A. 2016. Is post‐polyploidization diploidization the key to the evolutionary success of angiosperms. Botanical Journal of the Linnean Society 180: 1095 – 8339.
dc.identifier.citedreferenceDohm JC, Lange C, Holtgräwe D, Sörensen TR, Borchardt D, Schulz B, Lehrach H, Weisshaar B, Himmelbauer H. 2012. Palaeohexaploid ancestry for Caryophyllales inferred from extensive gene‐based physical and genetic mapping of the sugar beet genome ( Beta vulgaris ). The Plant Journal 70: 528 – 540.
dc.identifier.citedreferenceDonoghue MJ. 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31: 77 – 93.
dc.identifier.citedreferenceDonoghue MJ, Sanderson MJ. 2015. Confluence, synnovation, and depauperons in plant diversification. New Phytologist 207: 260 – 274.
dc.identifier.citedreferenceDouglas N, Spellenberg R. 2010. A new tribal classification of Nyctaginaceae. Taxon 59: 905 – 910.
dc.identifier.citedreferenceDoyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11 – 15.
dc.identifier.citedreferenceEdger PP, Heidel‐Fischer HM, Bekaert M, Rota J, Glöckner G, Platts AE, Heckel DG, Der JP, Wafula EK, Tang M et al. 2015. The butterfly plant arms‐race escalated by gene and genome duplications. Proceedings of the National Academy of Sciences, USA 112: 8362 – 8366.
dc.identifier.citedreferenceEdwards EJ, de Vos JM, Donoghue MJ. 2015. Doubtful pathways to cold tolerance in plants. Nature 521: E5 – E6.
dc.identifier.citedreferenceEric Schranz M, Mohammadin S, Edger PP. 2012. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag‐Time Model. Current Opinion in Plant Biology 15: 147 – 153.
dc.identifier.citedreferenceEstep MC, McKain MR, Vela Diaz D, Zhong J, Hodge JG, Hodkinson TR, Layton DJ, Malcomber ST, Pasquet R, Kellogg EA. 2014. Allopolyploidy, diversification, and the Miocene grassland expansion. Proceedings of the National Academy of Sciences, USA 111: 15149 – 15154.
dc.identifier.citedreferenceFriis EM, Crane P, Pedersen KR. 2011. Early flowers and angiosperm evolution. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceGuindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum‐likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307 – 321.
dc.identifier.citedreferenceHuang CH, Zhang C, Liu M, Hu Y, Gao T, Qi J, Ma H. 2016. Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Molecular Biology and Evolution 33: 2820 – 2835.
dc.identifier.citedreferenceJordan GJ, Macphail MK. 2003. A middle‐late Eocene inflorescence of Caryophyllaceae from Tasmania, Australia. American Journal of Botany 90: 761 – 768.
dc.identifier.citedreferenceKellogg EA. 2016. Has the connection between polyploidy and diversification actually been tested? Current opinion in plant biology 30: 25 – 32.
dc.identifier.citedreferenceLarkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics (Oxford England) 23: 2947 – 2948.
dc.identifier.citedreferenceLaurent S, Salamin N, Robinson‐Rechavi M. 2017. No evidence for the radiation time lag model after whole genome duplications in Teleostei. PLoS ONE 12: e0176384.
dc.identifier.citedreferenceLevin DA. 2002. The role of chromosomal change in plant evolution. New York, NY, USA: Oxford University Press.
dc.identifier.citedreferenceLi Weizhong, Godzik Adam. 2006. Cd‐Hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics Applications Note 22: 1658 – 59.
dc.identifier.citedreferenceMayrose I, Zhan SH, Rothfels CJ, Magnuson‐Ford K, Barker MS, Rieseberg LH, Otto SP. 2011. Recently formed polyploid plants diversify at lower rates. Science 333: 1257.
dc.identifier.citedreferenceMcKain MR, Tang H, McNeal JR, Ayyampalayam S, Davis JI, dePamphilis CW, Givnish TJ, Pires JC, Stevenson DW, Leebens‐Mack JH. 2016. A phylogenomic assessment of ancient polyploidy and genome evolution across the Poales. Genome Biology and Evolution 8: 1150 – 1164.
dc.identifier.citedreferenceMiller JS, Venable DL. 2000. Polyploidy and the evolution of gender dimorphism in plants. Science 289: 2335 – 2338.
dc.identifier.citedreferenceMoore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE. 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proceedings of the National Academy of Sciences, USA 107: 4623 – 4628.
dc.identifier.citedreferenceNei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3: 418 – 426.
dc.identifier.citedreferenceNichols DJ, Traverse A. 1971. Palynology, petrology, and depositional environments of some early Tertiary lignites in Texas. Geoscience and Man 3: 37 – 48.
dc.identifier.citedreferenceOcampo G, Columbus T. 2010. Molecular phylogenetics of suborder Cactineae (Caryophyllales), including insights into photosynthetic diversification and historical biogeography. American Journal of Botany 97: 1827 – 1847.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.