Show simple item record

Caspaseâ 1 inflammasomes in infection and inflammation

dc.contributor.authorLamkanfi, Mohamed
dc.contributor.authorKanneganti, Thirumala‐devi
dc.contributor.authorFranchi, Luigi
dc.contributor.authorNúñez, Gabriel
dc.date.accessioned2018-02-05T16:44:05Z
dc.date.available2018-02-05T16:44:05Z
dc.date.issued2007-08
dc.identifier.citationLamkanfi, Mohamed; Kanneganti, Thirumala‐devi ; Franchi, Luigi; Núñez, Gabriel (2007). "Caspaseâ 1 inflammasomes in infection and inflammation." Journal of Leukocyte Biology 82(2): 220-225.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/141971
dc.publisherWiley Periodicals, Inc.
dc.subject.otherASC
dc.subject.otherTLR
dc.subject.otherNLR
dc.subject.otherIpaf
dc.subject.othercryopyrin
dc.titleCaspaseâ 1 inflammasomes in infection and inflammation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141971/1/jlb0220.pdf
dc.identifier.doi10.1189/jlb.1206756
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferenceKhakh, B. S., North, R. A. ( 2006 ) P2X receptors as cellâ surface ATP sensors in health and disease. Nature 442, 527 â 532.
dc.identifier.citedreferenceDiez, E., Lee, S. H., Gauthier, S., Yaraghi, Z., Tremblay, M., Vidal, S., Gros, P. ( 2003 ) Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat. Genet. 33, 55 â 60.
dc.identifier.citedreferenceGrowney, J. D., Dietrich, W. F. ( 2000 ) Highâ resolution genetic and physical map of the Lgn1 interval in C57BL/6J implicates Naip2 or Naip5 in Legionella pneumophila pathogenesis. Genome Res. 10, 1158 â 1171.
dc.identifier.citedreferenceFortier, A., de Chastellier, C., Balor, S., Gros, P. ( 2007 ) Birc1e/Naip5 rapidly antagonizes modulation of phagosome maturation by Legionella pneumophila. Cell. Microbiol. 9, 910 â 923.
dc.identifier.citedreferenceMolofsky, A. B., Byrne, B. G., Whitfield, N. N., Madigan, C. A., Fuse, E. T., Tateda, K., Swanson, M. S. ( 2006 ) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J. Exp. Med. 203, 1093 â 1104.
dc.identifier.citedreferenceRen, T., Zamboni, D. S., Roy, C. R., Dietrich, W. F., Vance, R. E. ( 2006 ) Flagellinâ deficient Legionella mutants evade caspaseâ 1â and Naip5â mediated macrophage immunity. PLoS Pathog 2, e18.
dc.identifier.citedreferenceZamboni, D. S., Kobayashi, K. S., Kohlsdorf, T., Ogura, Y., Long, E. M., Vance, R. E., Kuida, K., Mariathasan, S., Dixit, V. M., Flavell, R. A., Dietrich, W. F., Roy, C. R. ( 2006 ) The Birc1e cytosolic patternâ recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat. Immunol. 7, 318 â 325.
dc.identifier.citedreferenceSolle, M., Labasi, J., Perregaux, D. G., Stam, E., Petrushova, N., Koller, B. H., Griffiths, R. J., Gabel, C. A. ( 2001 ) Altered cytokine production in mice lacking P2X(7) receptors. J. Biol. Chem. 276, 125 â 132.
dc.identifier.citedreferenceSurprenant, A., Rassendren, F., Kawashima, E., North, R. A., Buell, G. ( 1996 ) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735 â 738.
dc.identifier.citedreferencePelegrin, P., Surprenant, A. ( 2007 ) Pannexinâ 1 couples to maitotoxinâ and nigericinâ induced interleukinâ 1β release through a dye uptakeâ independent pathway. J. Biol. Chem. 282, 2386 â 2394.
dc.identifier.citedreferencePelegrin, P., Surprenant, A. ( 2006 ) Pannexinâ 1 mediates large pore formation and interleukinâ 1β release by the ATPâ gated P2X7 receptor. EMBO J. 25, 5071 â 5082.
dc.identifier.citedreferenceLocovei, S., Scemes, E., Qiu, F., Spray, D. C., Dahl, G. ( 2007 ) Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett. 581, 483 â 488.
dc.identifier.citedreferenceKanneganti, Tâ D., Lamkanfi, M., Kim, Yâ G., Chen, G., Park, Jâ H., Franchi, L., Vandenabeele, P., Nunez, G. ( 2007 ) Pannexinâ 1â mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Tollâ like receptor signaling. Immunity, In press.
dc.identifier.citedreferenceMartinon, F., Tschopp, J. ( 2004 ) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117, 561 â 574.
dc.identifier.citedreferenceMcDermott, M. F. ( 2002 ) Genetic clues to understanding periodic fevers, and possible therapies. Trends Mol. Med. 8, 550 â 554.
dc.identifier.citedreferenceDowds, T. A., Masumoto, J., Zhu, L., Inohara, N., Nunez, G. ( 2004 ) Cryopyrinâ induced interleukin 1β secretion in monocytic cells: enhanced activity of diseaseâ associated mutants and requirement for ASC. J. Biol. Chem. 279, 21924 â 21928.
dc.identifier.citedreferenceRosengren, S., Mueller, J. L., Anderson, J. P., Niehaus, B. L., Misaghi, A., Anderson, S., Boyle, D. L., Hoffman, H. M. ( 2007 ) Monocytes from familial cold autoinflammatory syndrome patients are activated by mild hypothermia. J. Allergy Clin. Immunol., 119, 991 â 996.
dc.identifier.citedreferenceHoffman, H. M., Rosengren, S., Boyle, D. L., Cho, J. Y., Nayar, J., Mueller, J. L., Anderson, J. P., Wanderer, A. A., Firestein, G. S. ( 2004 ) Prevention of coldâ associated acute inflammation in familial cold autoinflammatory syndrome by interleukinâ 1 receptor antagonist. Lancet 364, 1779 â 1785.
dc.identifier.citedreferenceGavrilin, M. A., Bouakl, I. J., Knatz, N. L., Duncan, M. D., Hall, M. W., Gunn, J. S., Wewers, M. D. ( 2006 ) Internalization and phagosome escape required for Francisella to induce human monocyte ILâ 1β processing and release. Proc. Natl. Acad. Sci. USA 103, 141 â 146.
dc.identifier.citedreferenceMariathasan, S., Weiss, D. S., Dixit, V. M., Monack, D. M. ( 2005 ) Innate immunity against Francisella tularensis is dependent on the ASC/caspaseâ 1 axis. J. Exp. Med. 202, 1043 â 1049.
dc.identifier.citedreferenceMackey, D., Belkhadir, Y., Alonso, J. M., Ecker, J. R., Dangl, J. L. ( 2003 ) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2â mediated resistance. Cell 112, 379 â 389.
dc.identifier.citedreferenceMackey, D., Holt III, B. F., Wiig, A., Dangl, J. L. ( 2002 ) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1â mediated resistance in Arabidopsis. Cell 108, 743 â 754.
dc.identifier.citedreferenceJaneway Jr., C. A., Medzhitov, R. ( 2002 ) Innate immune recognition. Annu. Rev. Immunol. 20, 197 â 216.
dc.identifier.citedreferenceAkira, S., Uematsu, S., Takeuchi, O. ( 2006 ) Pathogen recognition and innate immunity. Cell 124, 783 â 801.
dc.identifier.citedreferenceInohara Chamaillard, McDonald, C., Nunez, G. ( 2005 ) NODâ LRR proteins: role in hostâ microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74, 355 â 383.
dc.identifier.citedreferenceBoatright, K. M., Renatus, M., Scott, F. L., Sperandio, S., Shin, H., Pedersen, I. M., Ricci, J. E., Edris, W. A., Sutherlin, D. P., Green, D. R., Salvesen, G. S. ( 2003 ) A unified model for apical caspase activation. Mol. Cell 11, 529 â 541.
dc.identifier.citedreferenceNicholson, D. W. ( 1999 ) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028 â 1042.
dc.identifier.citedreferenceShi, Y. ( 2002 ) Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459 â 470.
dc.identifier.citedreferenceLamkanfi, M., Declercq, W., Kalai, M., Saelens, X., Vandenabeele, P. ( 2002 ) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ. 9, 358 â 361.
dc.identifier.citedreferenceThornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., Kostura, M. J., Miller, D. K., Molineaux, S. M., Weidner, J. R., Aunins, J., et al. ( 1992 ) A novel heterodimeric cysteine protease is required for interleukinâ 1 β processing in monocytes. Nature 356, 768 â 774.
dc.identifier.citedreferenceGhayur, T., Banerjee, S., Hugunin, M., Butler, D., Herzog, L., Carter, A., Quintal, L., Sekut, L., Talanian, R., Paskind, M., Wong, W., Kamen, R., Tracey, D., Allen, H. ( 1997 ) Caspaseâ 1 processes IFNâ γâ inducing factor and regulates LPSâ induced IFNâ γ production. Nature 386, 619 â 623.
dc.identifier.citedreferenceKuida, K., Lippke, J. A., Ku, G., Harding, M. W., Livingston, D. J., Su, M. S., Flavell, R. A. ( 1995 ) Altered cytokine export and apoptosis in mice deficient in interleukinâ 1 β converting enzyme. Science 267, 2000 â 2003.
dc.identifier.citedreferenceLi, P., Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnston, C., McDowell, J., Paskind, M., Rodman, L., Salfeld, J., et al. ( 1995 ) Mice deficient in ILâ 1 βâ converting enzyme are defective in production of mature ILâ 1 β and resistant to endotoxic shock. Cell 80, 401 â 411.
dc.identifier.citedreferenceSchmitz, J., Owyang, A., Oldham, E., Song, Y., Murphy, E., McClanahan, T. K., Zurawski, G., Moshrefi, M., Qin, J., Li, X., Gorman, D. M., Bazan, J. F., Kastelein, R. A. ( 2005 ) ILâ 33, an interleukinâ 1â like cytokine that signals via the ILâ 1 receptorâ related protein ST2 and induces T helper type 2â associated cytokines. Immunity 23, 479 â 490.
dc.identifier.citedreferenceMartinon, F., Burns, K., Tschopp, J. ( 2002 ) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proILâ β. Mol. Cell 10, 417 â 426.
dc.identifier.citedreferenceAgostini, L., Martinon, F., Burns, K., McDermott, M. F., Hawkins, P. N., Tschopp, J. ( 2004 ) NALP3 forms an ILâ 1βâ processing inflammasome with increased activity in Muckleâ Wells autoinflammatory disorder. Immunity 20, 319 â 325.
dc.identifier.citedreferenceBoyden, E. D., Dietrich, W. F. ( 2006 ) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38, 240 â 244.
dc.identifier.citedreferenceBruey, J. M., Brueyâ Sedano, N., Newman, R., Chandler, S., Stehlik, C., Reed, J. C. ( 2004 ) PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NFâ κB and caspaseâ 1 activation in macrophages. J. Biol. Chem. 279, 51897 â 51907.
dc.identifier.citedreferenceMartinon, F., Agostini, L., Meylan, E., Tschopp, J. ( 2004 ) Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 14, 1929 â 1934.
dc.identifier.citedreferenceMartinon, F., Petrilli, V., Mayor, A., Tardivel, A., Tschopp, J. ( 2006 ) Goutâ associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237 â 241.
dc.identifier.citedreferenceKanneganti, T. D., Bodyâ Malapel, M., Amer, A., Park, J. H., Whitfield, J., Franchi, L., Taraporewala, Z. F., Miller, D., Patton, J. T., Inohara, N., Nunez, G. ( 2006 ) Critical role for Cryopyrin/Nalp3 in activation of caspaseâ 1 in response to viral infection and doubleâ stranded RNA. J. Biol. Chem. 281, 36560 â 36568.
dc.identifier.citedreferenceKanneganti, T. D., Ozoren, N., Bodyâ Malapel, M., Amer, A., Park, J. H., Franchi, L., Whitfield, J., Barchet, W., Colonna, M., Vandenabeele, P., Bertin, J., Coyle, A., Grant, E. P., Akira, S., Nunez, G. ( 2006 ) Bacterial RNA and small antiviral compounds activate caspaseâ 1 through cryopyrin/Nalp3. Nature 440, 233 â 236.
dc.identifier.citedreferenceMariathasan, S., Newton, K., Monack, D. M., Vucic, D., French, D. M., Lee, W. P., Rooseâ Girma, M., Erickson, S., Dixit, V. M. ( 2004 ) Differential activation of the inflammasome by caspaseâ 1 adaptors ASC and Ipaf. Nature 430, 213 â 218.
dc.identifier.citedreferenceMariathasan, S., Weiss, D. S., Newton, K., McBride, J., O’Rourke, K., Rooseâ Girma, M., Lee, W. P., Weinrauch, Y., Monack, D. M., Dixit, V. M. ( 2006 ) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228 â 232.
dc.identifier.citedreferenceSutterwala, F. S., Ogura, Y., Szczepanik, M., Laraâ Tejero, M., Lichtenberger, G. S., Grant, E. P., Bertin, J., Coyle, A. J., Galan, J. E., Askenase, P. W., Flavell, R. A. ( 2006 ) Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspaseâ 1. Immunity 24, 317 â 327.
dc.identifier.citedreferenceAmer, A., Franchi, L., Kanneganti, T. D., Bodyâ Malapel, M., Ozoren, N., Brady, G., Meshinchi, S., Jagirdar, R., Gewirtz, A., Akira, S., Nunez, G. ( 2006 ) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J. Biol. Chem. 281, 35217 â 35223.
dc.identifier.citedreferenceFranchi, L., Amer, A., Bodyâ Malapel, M., Kanneganti, T. D., Ozoren, N., Jagirdar, R., Inohara, N., Vandenabeele, P., Bertin, J., Coyle, A., Grant, E. P., Nunez, G. ( 2006 ) Cytosolic flagellin requires Ipaf for activation of caspaseâ 1 and interleukin 1β in salmonellaâ infected macrophages. Nat. Immunol. 7, 576 â 582.
dc.identifier.citedreferenceMiao, E. A., Alpucheâ Aranda, C. M., Dors, M., Clark, A. E., Bader, M. W., Miller, S. I., Aderem, A. ( 2006 ) Cytoplasmic flagellin activates caspaseâ 1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 7, 569 â 575.
dc.identifier.citedreferenceOzoren, N., Masumoto, J., Franchi, L., Kanneganti, T. D., Bodyâ Malapel, M., Erturk, I., Jagirdar, R., Zhu, L., Inohara, N., Bertin, J., Coyle, A., Grant, E. P., Nunez, G. ( 2006 ) Distinct roles of TLR2 and the adaptor ASC in ILâ 1β/ILâ 18 secretion in response to Listeria monocytogenes. J. Immunol. 176, 4337 â 4342.
dc.identifier.citedreferenceYamamoto, M., Yaginuma, K., Tsutsui, H., Sagara, J., Guan, X., Seki, E., Yasuda, K., Yamamoto, M., Akira, S., Nakanishi, K., Noda, T., Taniguchi, S. ( 2004 ) ASC is essential for LPSâ induced activation of procaspaseâ 1 independently of TLRâ associated signal adaptor molecules. Genes Cells 9, 1055 â 1067.
dc.identifier.citedreferenceEzzell, J. W., Ivins, B. E., Leppla, S. H. ( 1984 ) Immunoelectrophoretic analysis, toxicity, and kinetics of in vitro production of the protective antigen and lethal factor components of Bacillus anthracis toxin. Infect. Immun. 45, 761 â 767.
dc.identifier.citedreferenceLeppla, S. H., Arora, N., Varughese, M. ( 1999 ) Anthrax toxin fusion proteins for intracellular delivery of macromolecules. J. Appl. Microbiol. 87, 284.
dc.identifier.citedreferenceFriedlander, A. M. ( 1986 ) Macrophages are sensitive to anthrax lethal toxin through an acidâ dependent process. J. Biol. Chem. 261, 7123 â 7126.
dc.identifier.citedreferenceRoberts, J. E., Watters, J. W., Ballard, J. D., Dietrich, W. F. ( 1998 ) Ltx1, a mouse locus that influences the susceptibility of macrophages to cytolysis caused by intoxication with Bacillus anthracis lethal factor, maps to chromosome 11. Mol. Microbiol. 29, 581 â 591.
dc.identifier.citedreferenceYamamoto, Y., Klein, T. W., Newton, C. A., Widen, R., Friedman, H. ( 1988 ) Growth of Legionella pneumophila in thioglycolateâ elicited peritoneal macrophages from A/J mice. Infect. Immun. 56, 370 â 375.
dc.identifier.citedreferenceYoshida, S., Goto, Y., Mizuguchi, Y., Nomoto, K., Skamene, E. ( 1991 ) Genetic control of natural resistance in mouse macrophages regulating intracellular Legionella pneumophila multiplication in vitro. Infect. Immun. 59, 428 â 432.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.