Show simple item record

Modulation of inflammation by interleukin‐27

dc.contributor.authorBosmann, Markus
dc.contributor.authorWard, Peter A.
dc.date.accessioned2018-02-05T16:44:11Z
dc.date.available2018-02-05T16:44:11Z
dc.date.issued2013-12
dc.identifier.citationBosmann, Markus; Ward, Peter A. (2013). "Modulation of inflammation by interleukin‐27." Journal of Leukocyte Biology 94(6): 1159-1165.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/141977
dc.publisherWiley Periodicals, Inc.
dc.subject.otherWSX‐1
dc.subject.otherIL‐30
dc.subject.otherp28
dc.subject.otherEBI3
dc.subject.othermacrophages
dc.titleModulation of inflammation by interleukin‐27
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
dc.contributor.affiliationotherCenter of Thrombosis and Hemostasis and Department of Hematology and Oncology, University Medical Center, Mainz, Germany
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141977/1/jlb1159.pdf
dc.identifier.doi10.1189/jlb.0213107
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferenceWu, C., Pot, C., Apetoh, L., Thalhamer, T., Zhu, B., Murugaiyan, G., Xiao, S., Lee, Y., Rangachari, M., Yosef, N., Kuchroo, V. K. ( 2013 ) Metallothioneins negatively regulate IL‐27‐induced type 1 regulatory T‐cell differentiation. Proc. Natl. Acad. Sci. USA 110, 7802 – 7807.
dc.identifier.citedreferenceHall, A. O., Beiting, D. P., Tato, C., John, B., Oldenhove, G., Lombana, C. G., Pritchard, G. H., Silver, J. S., Bouladoux, N., Stumhofer, J. S., Harris, T. H., Grainger, J., Wojno, E. D., Wagage, S., Roos, D. S., Scott, P., Turka, L. A., Cherry, S., Reiner, S. L., Cua, D., Belkaid, Y., Elloso, M. M., Hunter, C. A. ( 2012 ) The cytokines interleukin 27 and interferon‐ γ promote distinct Treg cell populations required to limit infection‐induced pathology. Immunity 37, 511 – 523.
dc.identifier.citedreferenceFindlay, E. G., Greig, R., Stumhofer, J. S., Hafalla, J. C., de Souza, J. B., Saris, C. J., Hunter, C. A., Riley, E. M., Couper, K. N. ( 2010 ) Essential role for IL‐27 receptor signaling in prevention of Th1‐mediated immunopathology during malaria infection. J. Immunol. 185, 2482 – 2492.
dc.identifier.citedreferenceVillegas‐Mendez, A., de Souza, J. B., Lavelle, S. W., Gwyer Findlay, E., Shaw, T. N., van Rooijen, N., Saris, C. J., Hunter, C. A., Riley, E. M., Couper, K. N. ( 2013 ) IL‐27 receptor signalling restricts the formation of pathogenic, terminally differentiated Th1 cells during malaria infection by repressing IL‐12 dependent signals. PLoS Pathog. 9, e1003293.
dc.identifier.citedreferenceGwyer Findlay, E., Villegas‐Mendez, A., de Souza, J. B., Inkson, C. A., Shaw, T. N., Saris, C. J., Hunter, C. A., Riley, E. M., Couper, K. N. ( 2013 ) IL‐27 receptor signaling regulates CD4+ T cell chemotactic responses during infection. J. Immunol. 190, 4553 – 4561.
dc.identifier.citedreferenceZhang, S., Liang, R., Luo, W., Liu, C., Wu, X., Gao, Y., Hao, J., Cao, G., Chen, X., Wei, J., Xia, S., Li, Z., Wen, T., Wu, Y., Zhou, X., Wang, P., Zhao, L., Wu, Z., Xiong, S., Gao, X., Gao, X., Chen, Y., Ge, Q., Tian, Z., Yin, Z. ( 2013 ) High susceptibility to liver injury in IL‐27 p28 conditional knockout mice involves intrinsic interferon‐γ dysregulation of CD4(+) T cells. Hepatology 57, 1620 – 1631.
dc.identifier.citedreferenceWittmann, M., Doble, R., Bachmann, M., Pfeilschifter, J., Werfel, T., Muhl, H. ( 2012 ) IL‐27 regulates IL‐18 binding protein in skin resident cells. PLoS One 7, e38751.
dc.identifier.citedreferenceTanida, S., Yoshitomi, H., Ishikawa, M., Kasahara, T., Murata, K., Shibuya, H., Ito, H., Nakamura, T. ( 2011 ) IL‐27‐producing CD14(+) cells infiltrate inflamed joints of rheumatoid arthritis and regulate inflammation and chemotactic migration. Cytokine 55, 237 – 244.
dc.identifier.citedreferenceSchmidt, C., Giese, T., Ludwig, B., Mueller‐Molaian, I., Marth, T., Zeuzem, S., Meuer, S. C., Stallmach, A. ( 2005 ) Expression of interleukin‐12‐related cytokine transcripts in inflammatory bowel disease: elevated interleukin‐23p19 and interleukin‐27p28 in Crohn’s disease but not in ulcerative colitis. Inflamm. Bowel Dis. 11, 16 – 23.
dc.identifier.citedreferenceShibata, S., Tada, Y., Kanda, N., Nashiro, K., Kamata, M., Karakawa, M., Miyagaki, T., Kai, H., Saeki, H., Shirakata, Y., Watanabe, S., Tamaki, K., Sato, S. ( 2010 ) Possible roles of IL‐27 in the pathogenesis of psoriasis. J. Invest. Dermatol. 130, 1034 – 1039.
dc.identifier.citedreferenceSweeney, C. M., Lonergan, R., Basdeo, S. A., Kinsella, K., Dungan, L. S., Higgins, S. C., Kelly, P. J., Costelloe, L., Tubridy, N., Mills, K. H., Fletcher, J. M. ( 2011 ) IL‐27 mediates the response to IFN‐ β therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav. Immun. 25, 1170 – 1181.
dc.identifier.citedreferenceDu, H. Z., Wang, Q., Ji, J., Shen, B. M., Wei, S. C., Liu, L. J., Ding, J., Ma, D. X., Wang, W., Peng, J., Hou, M. ( 2013 ) Expression of IL‐27, Th1 and Th17 in patients with aplastic anemia. J. Clin. Immunol. 33, 436 – 445.
dc.identifier.citedreferenceChae, S. C., Li, C. S., Kim, K. M., Yang, J. Y., Zhang, Q., Lee, Y. C., Yang, Y. S., Chung, H. T. ( 2007 ) Identification of polymorphisms in human interleukin‐27 and their association with asthma in a Korean population. J. Human Gen. 52, 355 – 361.
dc.identifier.citedreferenceHuang, N., Liu, L., Wang, X. Z., Liu, D., Yin, S. Y., Yang, X. D. ( 2008 ) Association of interleukin (IL)‐12 and IL‐27 gene polymorphisms with chronic obstructive pulmonary disease in a Chinese population. DNA Cell Biol. 27, 527 – 531.
dc.identifier.citedreferenceWong, H. R., Cvijanovich, N. Z., Hall, M., Allen, G. L., Thomas, N. J., Freishtat, R. J., Anas, N., Meyer, K., Checchia, P. A., Lin, R., Bigham, M. T., Sen, A., Nowak, J., Quasney, M., Henricksen, J. W., Chopra, A., Banschbach, S., Beckman, E., Harmon, K., Lahni, P., Shanley, T. P. ( 2012 ) Interleukin‐27 is a novel candidate diagnostic biomarker for bacterial infection in critically ill children. Crit. Care 16, R213.
dc.identifier.citedreferenceGuzzo, C., Hopman, W. M., Che Mat, N. F., Wobeser, W., Gee, K. ( 2010 ) Impact of HIV infection, highly active antiretroviral therapy, and hepatitis C coinfection on serum interleukin‐27. AIDS 24, 1371 – 1374.
dc.identifier.citedreferenceChen, Q., Swaminathan, S., Yang, D., Dai, L., Sui, H., Yang, J., Hornung, R. L., Wang, Y., Huang da, W., Hu, X., Lempicki, R. A., Imamichi, T. ( 2013 ) Interleukin‐27 is a potent inhibitor of cis HIV‐1 replication in monocyte‐derived dendritic cells via a type I interferon‐independent pathway. PLoS One 8, e59194.
dc.identifier.citedreferenceDai, L., Lidie, K. B., Chen, Q., Adelsberger, J. W., Zheng, X., Huang, D., Yang, J., Lempicki, R. A., Rehman, T., Dewar, R. L., Wang, Y., Hornung, R. L., Canizales, K. A., Lockett, S. J., Lane, H. C., Imamichi, T. ( 2013 ) IL‐27 inhibits HIV‐1 infection in human macrophages by down‐regulating host factor SPTBN1 during monocyte to macrophage differentiation. J. Exp. Med. 210, 517 – 534.
dc.identifier.citedreferenceSwaminathan, S., Hu, X., Zheng, X., Kriga, Y., Shetty, J., Zhao, Y., Stephens, R., Tran, B., Baseler, M. W., Yang, J., Lempicki, R. A., Huang, D., Lane, H. C., Imamichi, T. ( 2013 ) Interleukin‐27 treated human macrophages induce the expression of novel microRNAs which may mediate anti‐viral properties. Biochem. Biophys. Res. Commun. 434, 228 – 234.
dc.identifier.citedreferenceZhu, C., Zhang, R., Liu, L., Rasool, S. T., Mu, Y., Sun, W., Hao, Q., Liu, F., Zhu, Y., Wu, J. ( 2009 ) Hepatitis B virus enhances interleukin‐27 expression both in vivo and in vitro. Clin. Immunol. 131, 92 – 97.
dc.identifier.citedreferenceKao, J. T., Lai, H. C., Tsai, S. M., Lin, P. C., Chuang, P. H., Yu, C. J., Cheng, K. S., Su, W. P., Hsu, P. N., Peng, C. Y., Wu, Y. Y. ( 2012 ) Rather than interleukin‐27, interleukin‐6 expresses positive correlation with liver severity in naive hepatitis B infection patients. Liver Int. 32, 928 – 936.
dc.identifier.citedreferenceLiu, L., Cao, Z., Chen, J., Li, R., Cao, Y., Zhu, C., Wu, K., Wu, J., Liu, F., Zhu, Y. ( 2012 ) Influenza A virus induces interleukin‐27 through cyclooxygenase‐2 and protein kinase A signaling. J. Biol. Chem. 287, 11899 – 11910.
dc.identifier.citedreferencePflanz, S., Timans, J. C., Cheung, J., Rosales, R., Kanzler, H., Gilbert, J., Hibbert, L., Churakova, T., Travis, M., Vaisberg, E., Blumenschein, W. M., Mattson, J. D., Wagner, J. L., To, W., Zurawski, S., McClanahan, T. K., Gorman, D. M., Bazan, J. F., de Waal Malefyt, R., Rennick, D., Kastelein, R. A. ( 2002 ) IL‐27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity 16, 779 – 790.
dc.identifier.citedreferenceRousseau, F., Basset, L., Froger, J., Dinguirard, N., Chevalier, S., Gascan, H. ( 2010 ) IL‐27 structural analysis demonstrates similarities with ciliary neurotrophic factor (CNTF) and leads to the identification of antagonistic variants. Proc. Natl. Acad. Sci. USA 107, 19420 – 19425.
dc.identifier.citedreferenceCollison, L. W., Workman, C. J., Kuo, T. T., Boyd, K., Wang, Y., Vignali, K. M., Cross, R., Sehy, D., Blumberg, R. S., Vignali, D. A. ( 2007 ) The inhibitory cytokine IL‐35 contributes to regulatory T‐cell function. Nature 450, 566 – 569.
dc.identifier.citedreferenceCrabe, S., Guay‐Giroux, A., Tormo, A. J., Duluc, D., Lissilaa, R., Guilhot, F., Mavoungou‐Bigouagou, U., Lefouili, F., Cognet, I., Ferlin, W., Elson, G., Jeannin, P., Gauchat, J. F. ( 2009 ) The IL‐27 p28 subunit binds cytokine‐like factor 1 to form a cytokine regulating NK and T cell activities requiring IL‐6R for signaling. J. Immunol. 183, 7692 – 7702.
dc.identifier.citedreferenceStumhofer, J. S., Tait, E. D., Quinn, W. J., 3rd, Hosken, N., Spudy, B., Goenka, R., Fielding, C. A., O’Hara, A. C., Chen, Y., Jones, M. L., Saris, C. J., Rose‐John, S., Cua, D. J., Jones, S. A., Elloso, M. M., Grotzinger, J., Cancro, M. P., Levin, S. D., Hunter, C. A. ( 2010 ) A role for IL‐27p28 as an antagonist of gp130‐mediated signaling. Nat. Immunol. 11, 1119 – 1126.
dc.identifier.citedreferenceSprecher, C. A., Grant, F. J., Baumgartner, J. W., Presnell, S. R., Schrader, S. K., Yamagiwa, T., Whitmore, T. E., O’Hara, P. J., Foster, D. F. ( 1998 ) Cloning and characterization of a novel class I cytokine receptor. Biochem. Biophys. Res. Commun. 246, 82 – 90.
dc.identifier.citedreferencePflanz, S., Hibbert, L., Mattson, J., Rosales, R., Vaisberg, E., Bazan, J. F., Phillips, J. H., McClanahan, T. K., de Waal Malefyt, R., Kastelein, R. A. ( 2004 ) WSX‐1 and glycoprotein 130 constitute a signal‐transducing receptor for IL‐27. J. Immunol. 172, 2225 – 2231.
dc.identifier.citedreferenceJones, S. A., Scheller, J., Rose‐John, S. ( 2011 ) Therapeutic strategies for the clinical blockade of IL‐6/gp130 signaling. J. Clin. Invest. 121, 3375 – 3383.
dc.identifier.citedreferenceHall, A. O., Silver, J. S., Hunter, C. A. ( 2012 ) The immunobiology of IL‐27. Adv. Immunol. 115, 1 – 44.
dc.identifier.citedreferenceVillarino, A. V., III Larkin, J., Saris, C. J., Caton, A. J., Lucas, S., Wong, T., de Sauvage, F. J., Hunter, C. A. ( 2005 ) Positive and negative regulation of the IL‐27 receptor during lymphoid cell activation. J. Immunol. 174, 7684 – 7691.
dc.identifier.citedreferenceBatten, M., Ghilardi, N. ( 2007 ) The biology and therapeutic potential of interleukin 27. J. Mol. Med. 85, 661 – 672.
dc.identifier.citedreferenceDibra, D., Cutrera, J. J., Xia, X., Birkenbach, M. P., Li, S. ( 2009 ) Expression of WSX1 in tumors sensitizes IL‐27 signaling‐independent natural killer cell surveillance. Cancer Res. 69, 5505 – 5513.
dc.identifier.citedreferenceApetoh, L., Quintana, F. J., Pot, C., Joller, N., Xiao, S., Kumar, D., Burns, E. J., Sherr, D. H., Weiner, H. L., Kuchroo, V. K. ( 2010 ) The aryl hydrocarbon receptor interacts with c‐Maf to promote the differentiation of type 1 regulatory T cells induced by IL‐27. Nat. Immunol. 11, 854 – 861.
dc.identifier.citedreferenceOwaki, T., Asakawa, M., Fukai, F., Mizuguchi, J., Yoshimoto, T. ( 2006 ) IL‐27 induces Th1 differentiation via p38 MAPK/T‐bet‐ and intercellular adhesion molecule‐1/LFA‐1/ERK1/2‐dependent pathways. J. Immunol. 177, 7579 – 7587.
dc.identifier.citedreferenceBosmann, M., Haggadone, M. D., Hemmila, M. R., Zetoune, F. S., Sarma, J. V., Ward, P. A. ( 2012 ) Complement activation product C5a is a selective suppressor of TLR4‐induced, but not TLR3‐induced, production of IL‐27(p28) from macrophages. J. Immunol. 188, 5086 – 5093.
dc.identifier.citedreferenceWirtz, S., Becker, C., Fantini, M. C., Nieuwenhuis, E. E., Tubbe, I., Galle, P. R., Schild, H. J., Birkenbach, M., Blumberg, R. S., Neurath, M. F. ( 2005 ) EBV‐induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF‐ κ B activation. J. Immunol. 174, 2814 – 2824.
dc.identifier.citedreferenceHause, L., Al‐Salleeh, F. M., Petro, T. M. ( 2007 ) Expression of IL‐27 p28 by Theiler’s virus‐infected macrophages depends on TLR3 and TLR7 activation of JNK‐MAP‐kinases. Antiviral Res. 76, 159 – 167.
dc.identifier.citedreferenceSmits, H. H., van Beelen, A. J., Hessle, C., Westland, R., de Jong, E., Soeteman, E., Wold, A., Wierenga, E. A., Kapsenberg, M. L. ( 2004 ) Commensal gram‐negative bacteria prime human dendritic cells for enhanced IL‐23 and IL‐27 expression and enhanced Th1 development. Eur. J. Immunol. 34, 1371 – 1380.
dc.identifier.citedreferenceSchuetze, N., Schoeneberger, S., Mueller, U., Freudenberg, M. A., Alber, G., Straubinger, R. K. ( 2005 ) IL‐12 family members: differential kinetics of their TLR4‐mediated induction by Salmonella enteritidis and the impact of IL‐10 in bone marrow‐derived macrophages. Int. Immunol. 17, 649 – 659.
dc.identifier.citedreferenceWirtz, S., Tubbe, I., Galle, P. R., Schild, H. J., Birkenbach, M., Blumberg, R. S., Neurath, M. F. ( 2006 ) Protection from lethal septic peritonitis by neutralizing the biological function of interleukin 27. J. Exp. Med. 203, 1875 – 1881.
dc.identifier.citedreferenceVillarino, A., Hibbert, L., Lieberman, L., Wilson, E., Mak, T., Yoshida, H., Kastelein, R. A., Saris, C., Hunter, C. A. ( 2003 ) The IL‐27R (WSX‐1) is required to suppress T cell hyperactivity during infection. Immunity 19, 645 – 655.
dc.identifier.citedreferenceGafa, V., Lande, R., Gagliardi, M. C., Severa, M., Giacomini, E., Remoli, M. E., Nisini, R., Ramoni, C., Di Francesco, P., Aldebert, D., Grillot, R., Coccia, E. M. ( 2006 ) Human dendritic cells following Aspergillus fumigatus infection express the CCR7 receptor and a differential pattern of interleukin‐12 (IL‐12), IL‐23, and IL‐27 cytokines, which lead to a Th1 response. Infect. Immun. 74, 1480 – 1489.
dc.identifier.citedreferenceMolle, C., Nguyen, M., Flamand, V., Renneson, J., Trottein, F., De Wit, D., Willems, F., Goldman, M., Goriely, S. ( 2007 ) IL‐27 synthesis induced by TLR ligation critically depends on IFN regulatory factor 3. J. Immunol. 178, 7607 – 7615.
dc.identifier.citedreferenceLiu, J. G., Guan, X. Q., Ma, X. J. ( 2007 ) Regulation of IL‐27 p28 gene expression in macrophages through MyD88‐ and interferon‐ γ ‐mediated pathways. J. Exp. Med. 204, 141 – 152.
dc.identifier.citedreferenceMolle, C., Goldman, M., Goriely, S. ( 2010 ) Critical role of the IFN‐stimulated gene factor 3 complex in TLR‐mediated IL‐27p28 gene expression revealing a two‐step activation process. J. Immunol. 184, 1784 – 1792.
dc.identifier.citedreferenceCurran, M. A., Geiger, T. L., Montalvo, W., Kim, M., Reiner, S. L., Al‐Shamkhani, A., Sun, J. C., Allison, J. P. ( 2013 ) Systemic 4‐1BB activation induces a novel T cell phenotype driven by high expression of eomesodermin. J. Exp. Med. 210, 743 – 755.
dc.identifier.citedreferenceSchnurr, M., Toy, T., Shin, A., Wagner, M., Cebon, J., Maraskovsky, E. ( 2005 ) Extracellular nucleotide signaling by P2 receptors inhibits IL‐12 and enhances IL‐23 expression in human dendritic cells: a novel role for the cAMP pathway. Blood 105, 1582 – 1589.
dc.identifier.citedreferenceRicklin, D., Hajishengallis, G., Yang, K., Lambris, J. D. ( 2010 ) Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785 – 797.
dc.identifier.citedreferenceBosmann, M., Ward, P. A. ( 2012 ) Role of c3, c5 and anaphylatoxin receptors in acute lung injury and in sepsis. Adv. Exp. Med. Biol. 946, 147 – 159.
dc.identifier.citedreferenceHawlisch, H., Belkaid, Y., Baelder, R., Hildeman, D., Gerard, C., Kohl, J. ( 2005 ) C5a negatively regulates Toll‐like receptor 4‐induced immune responses. Immunity 22, 415 – 426.
dc.identifier.citedreferencela Sala, A., Gadina, M., Kelsall, B. L. ( 2005 ) G(i) ‐protein‐dependent inhibition of IL‐12 production is mediated by activation of the phosphatidylinositol 3‐kinase‐protein 3 kinase B/Akt pathway and JNK. J. Immunol. 175, 2994 – 2999.
dc.identifier.citedreferenceBatten, M., Li, J., Yi, S., Kljavin, N. M., Danilenko, D. M., Lucas, S., Lee, J., de Sauvage, F. J., Ghilardi, N. ( 2006 ) Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17‐producing T cells. Nat. Immunol. 7, 929 – 936.
dc.identifier.citedreferenceStumhofer, J. S., Laurence, A., Wilson, E. H., Huang, E., Tato, C. M., Johnson, L. M., Villarino, A. V., Huang, Q., Yoshimura, A., Sehy, D., Saris, C. J., O’Shea, J. J., Hennighausen, L., Ernst, M., Hunter, C. A. ( 2006 ) Interleukin 27 negatively regulates the development of interleukin 17‐producing T helper cells during chronic inflammation of the central nervous system. Nat. Immunol. 7, 937 – 945.
dc.identifier.citedreferenceStumhofer, J. S., Silver, J. S., Laurence, A., Porrett, P. M., Harris, T. H., Turka, L. A., Ernst, M., Saris, C. J., O’Shea, J. J., Hunter, C. A. ( 2007 ) Interleukins 27 and 6 induce STAT3‐mediated T cell production of interleukin 10. Nat. Immunol. 8, 1363 – 1371.
dc.identifier.citedreferenceCao, Y., Doodes, P. D., Glant, T. T., Finnegan, A. ( 2008 ) IL‐27 induces a Th1 immune response and susceptibility to experimental arthritis. J. Immunol. 180, 922 – 930.
dc.identifier.citedreferenceNiedbala, W., Cai, B., Wei, X., Patakas, A., Leung, B. P., McInnes, I. B., Liew, F. Y. ( 2008 ) Interleukin 27 attenuates collagen‐induced arthritis. Ann. Rheum. Dis. 67, 1474 – 1479.
dc.identifier.citedreferenceBatten, M., Kljavin, N. M., Li, J., Walter, M. J., de Sauvage, F. J., Ghilardi, N. ( 2008 ) Cutting edge: IL‐27 is a potent inducer of IL‐10 but not FoxP3 in murine T cells. J. Immunol. 180, 2752 – 2756.
dc.identifier.citedreferenceHamano, S., Himeno, K., Miyazaki, Y., Ishii, K., Yamanaka, A., Takeda, A., Zhang, M., Hisaeda, H., Mak, T. W., Yoshimura, A., Yoshida, H. ( 2003 ) WSX‐1 is required for resistance to Trypanosoma cruzi infection by regulation of proinflammatory cytokine production. Immunity 19, 657 – 667.
dc.identifier.citedreferenceSasaoka, T., Ito, M., Yamashita, J., Nakajima, K., Tanaka, I., Narita, M., Hara, Y., Hada, K., Takahashi, M., Ohno, Y., Matsuo, T., Kaneshiro, Y., Tanaka, H., Kaneko, K. ( 2011 ) Treatment with IL‐27 attenuates experimental colitis through the suppression of the development of IL‐17‐producing T helper cells. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G568 – G576.
dc.identifier.citedreferenceCox, J. H., Kljavin, N. M., Ramamoorthi, N., Diehl, L., Batten, M., Ghilardi, N. ( 2011 ) IL‐27 promotes T cell‐dependent colitis through multiple mechanisms. J. Exp. Med. 208, 115 – 123.
dc.identifier.citedreferenceKim, G., Shinnakasu, R., Saris, C. J., Cheroutre, H., Kronenberg, M. ( 2013 ) A novel role for IL‐27 in mediating the survival of activated mouse CD4 T lymphocytes. J. Immunol. 190, 1510 – 1518.
dc.identifier.citedreferenceBatten, M., Ramamoorthi, N., Kljavin, N. M., Ma, C. S., Cox, J. H., Dengler, H. S., Danilenko, D. M., Caplazi, P., Wong, M., Fulcher, D. A., Cook, M. C., King, C., Tangye, S. G., de Sauvage, F. J., Ghilardi, N. ( 2010 ) IL‐27 supports germinal center function by enhancing IL‐21 production and the function of T follicular helper cells. J. Exp. Med. 207, 2895 – 2906.
dc.identifier.citedreferenceAdamopoulos, I. E., Pflanz, S. ( 2013 ) The emerging role of interleukin 27 in inflammatory arthritis and bone destruction. Cytokine Growth Factor Rev. 24, 115 – 121.
dc.identifier.citedreferenceSiebler, J., Wirtz, S., Frenzel, C., Schuchmann, M., Lohse, A. W., Galle, P. R., Neurath, M. F. ( 2008 ) Cutting edge: a key pathogenic role of IL‐27 in T cell‐mediated hepatitis. J. Immunol. 180, 30 – 33.
dc.identifier.citedreferenceShimizu, M., Ogura, K., Mizoguchi, I., Chiba, Y., Higuchi, K., Ohtsuka, H., Mizuguchi, J., Yoshimoto, T. ( 2013 ) IL‐27 promotes nitric oxide production induced by LPS through STAT1, NF‐ κ B and MAPKs. Immunobiology 218, 628 – 634.
dc.identifier.citedreferenceDong, S., Zhang, X., He, Y., Xu, F., Li, D., Xu, W., Wang, H., Yin, Y., Cao, J. ( 2013 ) Synergy of IL‐27 and TNF‐ α in regulating CXCL10 expression in lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 48, 518 – 530.
dc.identifier.citedreferenceDufour, J. H., Dziejman, M., Liu, M. T., Leung, J. H., Lane, T. E., Luster, A. D. ( 2002 ) IFN‐ γ ‐inducible protein 10 (IP‐10; CXCL10)‐deficient mice reveal a role for IP‐10 in effector T cell generation and trafficking. J. Immunol. 168, 3195 – 3204.
dc.identifier.citedreferenceNatividad, K. D., Junankar, S. R., Mohd Redzwan, N., Nair, R., Wirasinha, R. C., King, C., Brink, R., Swarbrick, A., Batten, M. ( 2013 ) Interleukin‐27 signaling promotes immunity against endogenously arising murine tumors. PLoS One 8, e57469.
dc.identifier.citedreferenceHunter, C. A., Kastelein, R. ( 2012 ) Interleukin‐27: balancing protective and pathological immunity. Immunity 37, 960 – 969.
dc.identifier.citedreferenceAnderson, C. F., Stumhofer, J. S., Hunter, C. A., Sacks, D. ( 2009 ) IL‐27 regulates IL‐10 and IL‐17 from CD4+ cells in nonhealing Leishmania major infection. J. Immunol. 183, 4619 – 4627.
dc.identifier.citedreferenceIwasaki, Y., Fujio, K., Okamura, T., Yanai, A., Sumitomo, S., Shoda, H., Tamura, T., Yoshida, H., Charnay, P., Yamamoto, K. ( 2013 ) Egr‐2 transcription factor is required for Blimp‐1‐mediated IL‐10 production in IL‐27‐stimulated CD4(+) T cells. Eur. J. Immunol. 43, 1063 – 1073.
dc.identifier.citedreferencePerona‐Wright, G., Kohlmeier, J. E., Bassity, E., Freitas, T. C., Mohrs, K., Cookenham, T., Situ, H., Pearce, E. J., Woodland, D. L., Mohrs, M. ( 2012 ) Persistent loss of IL‐27 responsiveness in CD8+ memory T cells abrogates IL‐10 expression in a recall response. Proc. Natl. Acad. Sci. USA 109, 18535 – 18540.
dc.identifier.citedreferenceFitzgerald, D. C., Fonseca‐Kelly, Z., Cullimore, M. L., Safabakhsh, P., Saris, C. J., Zhang, G. X., Rostami, A. ( 2013 ) Independent and interdependent immunoregulatory effects of IL‐27, IFN‐ β, and IL‐10 in the suppression of human Th17 cells and murine experimental autoimmune encephalomyelitis. J. Immunol. 190, 3225 – 3234.
dc.identifier.citedreferenceMurugaiyan, G., Beynon, V., Pires Da Cunha, A., Joller, N., Weiner, H. L. ( 2012 ) IFN‐ γ limits Th9‐mediated autoimmune inflammation through dendritic cell modulation of IL‐27. J. Immunol. 189, 5277 – 5283.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.