Show simple item record

Angiosperm phylogeny: 17 genes, 640 taxa

dc.contributor.authorSoltis, Douglas E.
dc.contributor.authorSmith, Stephen A.
dc.contributor.authorCellinese, Nico
dc.contributor.authorWurdack, Kenneth J.
dc.contributor.authorTank, David C.
dc.contributor.authorBrockington, Samuel F.
dc.contributor.authorRefulio‐rodriguez, Nancy F.
dc.contributor.authorWalker, Jay B.
dc.contributor.authorMoore, Michael J.
dc.contributor.authorCarlsward, Barbara S.
dc.contributor.authorBell, Charles D.
dc.contributor.authorLatvis, Maribeth
dc.contributor.authorCrawley, Sunny
dc.contributor.authorBlack, Chelsea
dc.contributor.authorDiouf, Diaga
dc.contributor.authorXi, Zhenxiang
dc.contributor.authorRushworth, Catherine A.
dc.contributor.authorGitzendanner, Matthew A.
dc.contributor.authorSytsma, Kenneth J.
dc.contributor.authorQiu, Yin‐long
dc.contributor.authorHilu, Khidir W.
dc.contributor.authorDavis, Charles C.
dc.contributor.authorSanderson, Michael J.
dc.contributor.authorBeaman, Reed S.
dc.contributor.authorOlmstead, Richard G.
dc.contributor.authorJudd, Walter S.
dc.contributor.authorDonoghue, Michael J.
dc.contributor.authorSoltis, Pamela S.
dc.date.accessioned2018-02-05T16:45:42Z
dc.date.available2018-02-05T16:45:42Z
dc.date.issued2011-04
dc.identifier.citationSoltis, Douglas E.; Smith, Stephen A.; Cellinese, Nico; Wurdack, Kenneth J.; Tank, David C.; Brockington, Samuel F.; Refulio‐rodriguez, Nancy F. ; Walker, Jay B.; Moore, Michael J.; Carlsward, Barbara S.; Bell, Charles D.; Latvis, Maribeth; Crawley, Sunny; Black, Chelsea; Diouf, Diaga; Xi, Zhenxiang; Rushworth, Catherine A.; Gitzendanner, Matthew A.; Sytsma, Kenneth J.; Qiu, Yin‐long ; Hilu, Khidir W.; Davis, Charles C.; Sanderson, Michael J.; Beaman, Reed S.; Olmstead, Richard G.; Judd, Walter S.; Donoghue, Michael J.; Soltis, Pamela S. (2011). "Angiosperm phylogeny: 17 genes, 640 taxa." American Journal of Botany 98(4): 704-730.
dc.identifier.issn0002-9122
dc.identifier.issn1537-2197
dc.identifier.urihttps://hdl.handle.net/2027.42/142064
dc.publisherBotanical Society of America
dc.publisherWiley Periodicals, Inc.
dc.subject.otherSuperasteridae
dc.subject.otherRAxML
dc.subject.othermolecular systematics
dc.subject.otherlarge data sets
dc.subject.otherbioinformatics
dc.subject.otherangiosperms
dc.subject.otherSuperrosidae
dc.subject.othersupermatrix
dc.titleAngiosperm phylogeny: 17 genes, 640 taxa
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbsecondlevelBotany
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109â 1048 USA
dc.contributor.affiliationotherDepartment of Biology, University of Florida, Gainesville, Florida 32611â 8525 USA
dc.contributor.affiliationotherDepartment of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 USA
dc.contributor.affiliationotherFlorida Museum of Natural History, University of Florida, Gainesville, Florida 32611â 7800 USA
dc.contributor.affiliationotherDepartment of Botany, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013â 7012 USA
dc.contributor.affiliationotherDepartment of Forest Ecology and Biogeosciences & Stillinger Herbarium, University of Idaho, P. O. Box 441133, Moscow, Idaho 83844â 1133 USA
dc.contributor.affiliationotherDepartment of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
dc.contributor.affiliationotherDepartment of Biology, University of Washington, Seattle, Washington 98195â 5325 USA
dc.contributor.affiliationotherDepartment of Botany, University of Wisconsin, Madison, Wisconsin 53706 USA
dc.contributor.affiliationotherBiology Department, Oberlin College, Oberlin, Ohio 44074â 1097 USA
dc.contributor.affiliationotherDepartment of Biological Sciences, Eastern Illinois University, Charleston, Illinois 61920 USA
dc.contributor.affiliationotherDepartment of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148 USA
dc.contributor.affiliationotherDepartment of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 USA
dc.contributor.affiliationotherDépartement de Biologie Végétale, Université Cheikh AntDeara Diop, Dakarâ Fann, BP 5005, Republic of Sénégal
dc.contributor.affiliationotherDepartment of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA
dc.contributor.affiliationotherDepartment of Ecology and Evolutionary Biology, University of Arizona, 1041 East Lowell, Tucson, Arizona 85721â 0088 USA
dc.contributor.affiliationotherDepartment of Ecology and Evolutionary Biology, Yale University, P. O. Box 208106, New Haven, Connecticut 06520â 8106 USA
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/1/ajb20704-sup-0010.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/2/ajb20704.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/3/ajb20704-sup-0001.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/4/ajb20704-sup-0016.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/5/ajb20704-sup-0017.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/6/ajb20704-sup-0021.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/7/ajb20704-sup-0003.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/8/ajb20704-sup-0002.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/9/ajb20704-sup-0011.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/10/ajb20704-sup-0019.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/11/ajb20704-sup-0015.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/12/ajb20704-sup-0006.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/13/ajb20704-sup-0020.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/14/ajb20704-sup-0013.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/15/ajb20704-sup-0004.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/16/ajb20704-sup-0012.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/17/ajb20704-sup-0005.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/18/ajb20704-sup-0018.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/19/ajb20704-sup-0009.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/20/ajb20704-sup-0014.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/21/ajb20704-sup-0007.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/22/ajb20704-sup-0008.pdf
dc.identifier.doi10.3732/ajb.1000404
dc.identifier.sourceAmerican Journal of Botany
dc.identifier.citedreferenceRodman, J. E., P. S. Soltis, D. E. Soltis, K. J. Sytsma, and K. G. Karol. 1998. Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. American Journal of Botany 85: 997 â 1007.
dc.identifier.citedreferenceLundberg, J., and K. Bremer. 2003. A phylogenetic study of the order Asterales using one morphological and three molecular data sets. International Journal of Plant Sciences 164: 553 â 578.
dc.identifier.citedreferenceMalécot, V. 2002. Histoire, classification et phylogénie des Olacaceae Brown (Santalales). Thèse de Doctorat de l’Université Paris 6, France.
dc.identifier.citedreferenceMalécot, V., and D. L. Nickrent. 2008. Molecular phylogenetic relationships of Olacaceae and related Santalales. Systematic Botany 33: 97 â 106.
dc.identifier.citedreferenceManos, P. S., and K. P. Steele. 1997. Phylogenetic analysis of â higherâ Hamamelididae based on plastid sequence data. American Journal of Botany 84: 1407 â 1419.
dc.identifier.citedreferenceMoore, M. J., C. D. Bell, P. S. Soltis, and D. E. Soltis. 2007. Using plastid genomeâ scale data to resolve enigmatic relationships among basal angiosperms. Proceedings of the National Academy of Sciences, USA 104: 19363 â 19368.
dc.identifier.citedreferenceMoore, M. J., N. Hassan, M. A. Gitzendanner, R. A. Bruenn, M. Croley, A. Vandeventer, and J. W. Horn el al. In press. Phylogenetic analysis of the plastid inverted repeat for 244 species: Insights into deeperâ level angiosperm relationships from a long, slowly evolving sequence region. International Journal of Plant Sciences.
dc.identifier.citedreferenceMoore, M. J., P. S. Soltis, C. D. Bell, J. G. Burleigh, and D. E. Soltis. 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proceedings of the National Academy of Sciences, USA 107: 4623 â 4628.
dc.identifier.citedreferenceMorgan, D. R., and D. E. Soltis. 1993. Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data. Annals of the Missouri Botanical Garden 80: 631 â 660.
dc.identifier.citedreferenceMuellner, A. N., D. D. Vassiliades, and S. S. Renner. 2007. Placing Biebersteiniaceae, a herbaceous clade of Sapindales, in a temporal and geographic context. Plant Systematics and Evolution 266: 233 â 252.
dc.identifier.citedreferenceNickrent, D. L., A. Blarer, Y.â L. Qiu, R. Vidalâ Russell, and F. E. Anderson. 2004. Phylogenetic inference in Rafflesiales: The influence of rate heterogeneity and horizontal gene transfer. BMC Evolutionary Biology 4: 40.
dc.identifier.citedreferenceNickrent, D. L., V. Malécot, R. Vidalâ Russell, and J. P. Der. 2010. A revised classification of Santalales. Taxon 59: 538 â 558.
dc.identifier.citedreferenceNixon, K. C. 1999. The Parsimony Ratchet, a new method for rapid parsimony analysis. Cladistics 15: 407 â 414.
dc.identifier.citedreferenceNyffeler, R., and U. Eggli. 2010. Disintegrating Portulacaceae: A new familial classification of the suborder Portulacineae (Caryophyllales) based on molecular and morphological data. Taxon 59: 227 â 240.
dc.identifier.citedreferenceOlmstead, R. G., K. J. Kim, R. K. Jansen, and S. J. Wagstaff. 2000. The phylogeny of the Asteridae sensu lato based on chloroplast ndhF gene sequences. Molecular Phylogenetics and Evolution 16: 96 â 112.
dc.identifier.citedreferenceOlmstead, R. G., H. Michaels, K. M. Scott, and J. D. Palmer. 1992. Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbc L. Annals of the Missouri Botanical Garden 79: 249 â 265.
dc.identifier.citedreferencePanero, J. L., and V. A. Funk. 2008. The value of sampling anomalous taxa in phylogenetic studies: Major clades of the Asteraceae revealed. Molecular Phylogenetics and Evolution 47: 757 â 782.
dc.identifier.citedreferencePotter, D., T. Eriksson, R. C. Evans, S.â H. Oh, J. Smedmark, D. Morgan, and M. Kerr el al. 2007. Phylogeny and classification of Rosaceae. Plant Systematics and Evolution 266: 5 â 43.
dc.identifier.citedreferencePotter, D., F. Gao, P. E. Bortiri, S.â H. Oh, and S. Baggett. 2002. Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnLâ trnF nucleotide sequence data. Plant Systematics and Evolution 231: 77 â 89.
dc.identifier.citedreferenceQiu, Y.â L., O. Dombrovska, J. H. Lee, L. B. Li, B. A. Whitlock, F. Bernasconiâ Quadroni, and J. S. Rest el al. 2005. Phylogenetic analyses of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes. International Journal of Plant Sciences 166: 815 â 842.
dc.identifier.citedreferenceQiu, Y.â L., J. Lee, F. Bernasconiâ Quadroni, D. E. Soltis, P. S. Soltis, M. J. Zanis, and E. A. Zimmer el al. 1999. The earliest angiosperms: Evidence from mitochondrial, plastid and nuclear genes. Nature 402: 404 â 407.
dc.identifier.citedreferenceQiu, Y.â L., L. Li, B. Wang, J.â Y. Xue, T. A. Hendry, R.â Q. Li, and J. W. Brown el al. 2010. Angiosperm phylogeny inferred from sequences of four mitochondrial genes. Journal of Systematics and Evolution 48: 391 â 425.
dc.identifier.citedreferenceRenner, S. S. 1999. Circumscription and phylogeny of Laurales: Evidence from molecular and morphological data. American Journal of Botany 86: 1301 â 1315.
dc.identifier.citedreferenceRodman, J. E., K. G. Karol, R. A. Price, and K. J. Sytsma. 1996. Molecules, morphology, and Dahlgren’s expanded order Capparales. Systematic Botany 21: 289 â 307.
dc.identifier.citedreferenceRudall, P. J., D. D. Sokoloff, M. V. Remizowa, J. G. Conran, J. I. Davis, T. D. Macfarlane, and D. W. Stevenson. 2007. Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an earlyâ divergent angiosperm lineage. American Journal of Botany 94: 1073 â 1092.
dc.identifier.citedreferenceRuhfel, B. R., V. Bittrich, C. P. Bove, M. H. G. Gustafsson, C. T. Philbrick, R. Rutihauser, Z. Xi, and C. C. Davis. 2011. Phylogeny of the clusioid clade (Malpighiales): evidence from the plastid and mitochondrial genomes. American Journal of Botany 98: 306 â 325.
dc.identifier.citedreferenceSaarela, J. M., H. S. Rai, J. A. Doyle, P. K. Endress, S. Mathews, A. D. Marchant, B. G. Briggs, and S. W. Graham. 2007. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446: 312 â 315.
dc.identifier.citedreferenceSanderson, M. J., M. M. McMahon, and M. Steel. 2010. Phylogenomics with incomplete taxon coverage: the limits to inference. BMC Evolutionary Biology 10: 155.
dc.identifier.citedreferenceSauquet, H., J. A. Doyle, T. Scharaschkin, T. Borsch, K. W. Hilu, L. W. Chatrou, and A. L. Thomas. 2003. Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution. Botanical Journal of the Linnean Society 142: 125 â 186.
dc.identifier.citedreferenceSavolainen, V., M. W. Chase, S. B. Hoot, C. M. Morton, D. E. Soltis, C. Bayer, and M. F. Fay el al. 2000a. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Systematic Biology 49: 306 â 362.
dc.identifier.citedreferenceSavolainen, V., M. F. Fay, D. C. Albach, A. Backlund, M. van der Bank, K. M. Cameron, and S. A. Johnson el al. 2000b. Phylogeny of the eudicots: A nearly complete familial analysis based on rbcL gene sequences. Kew Bulletin 55: 257 â 309.
dc.identifier.citedreferenceSchönenberger, J., A. A. Anderberg, and K. J. Sytsma. 2005. Molecular phylogenetics and patterns of floral evolution in the Ericales. International Journal of Plant Sciences 166: 265 â 288.
dc.identifier.citedreferenceSchönenberger, J., M. von Balthazar, and K. J. Sytsma. 2010. Diversity and evolution of floral structure among early diverging lineages in the Ericales. Philosophical Transactions of the Royal Society of London, B, Biological Sciences 365: 437 â 448.
dc.identifier.citedreferenceSikes, D. S., and P. O. Lewis. 2001. PAUPRat: A tool to implement parsimony and likelihood ratchet searches using PAUP* [online computer program]. Website http://www.ucalgary.ca/â ¼dsikes/software2.htm.
dc.identifier.citedreferenceSimmons, M. P., C. C. Clevinger, V. Savolainen, R. H. Archer, S. Mathews, and J. J. Doyle. 2001a. Phylogeny of the Celastraceae inferred from phytochrome B gene sequence and morphology. American Journal of Botany 88: 313 â 325.
dc.identifier.citedreferenceSimmons, M. P., V. Savolainen, C. C. Clevinger, R. H. Archer, and J. I. Davis. 2001b. Phylogeny of the Celastraceae inferred from 26S nuclear ribosomal DNA, phytochrome B, rbcL, atpB, and morphology. Molecular Phylogenetics and Evolution 19: 353 â 366.
dc.identifier.citedreferenceSmith, S. A., J. M. Beaulieu, and M. J. Donoghue. 2009. Megaâ phylogeny approach for comparative biology: An alternative to supertree and supermatrix approaches. BMC Evolutionary Biology 9: 37.
dc.identifier.citedreferenceSmith, S. A., and C. W. Dunn. 2008. Phyutility: A phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24: 715 â 716.
dc.identifier.citedreferenceSoltis, D. E., M. A. Gitzendanner, and P. S. Soltis. 2007. A 567â taxon data set for angiosperms: The challenges posed by Bayesian analyses of large data sets. International Journal of Plant Sciences 168: 137 â 157.
dc.identifier.citedreferenceSoltis, D. E., and P. S. Soltis. 1997. Phylogenetic relationships in Saxifragaceae sensu lato: A comparison of topologies based on 18S rDNA and rbcL sequences. American Journal of Botany 84: 504 â 522.
dc.identifier.citedreferenceSoltis, P. S., D. E. Soltis, and M. W. Chase. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402 â 404.
dc.identifier.citedreferenceSoltis, D. E., P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis, and V. Savolainen el al. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society 133: 381 â 461.
dc.identifier.citedreferenceSoltis, D. E., P. S. Soltis, T. G. Collier, and M. L. Edgerton. 1991. Chloroplast DNA variation within and among genera of the Heuchera group: cpDNA evidence for intergeneric chloroplast transfer and the paraphyly of Mitella and Heuchera. American Journal of Botany 78: 1091 â 1112.
dc.identifier.citedreferenceSoltis, D. E., P. S. Soltis, P. K. Endress, and M. W. Chase. 2005. Phylogeny and evolution of the angiosperms. Sinauer, Sunderland, Massachusetts, USA.
dc.identifier.citedreferenceSoltis, D. E., P. S. Soltis, D. L. Nickrent, L. A. Johnson, W. J. Hahn, S. B. Hoot, and J. A. Sweere el al. 1997. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Annals of the Missouri Botanical Garden 84: 1 â 49.
dc.identifier.citedreferenceStamatakis, A. 2006. RAxMLâ VIâ HPC: Maximum likelihoodâ based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688 â 2690.
dc.identifier.citedreferenceStamatakis, A., P. Hoover, and J. Rougemont. 2008. A fast bootstrapping algorithm for the RAxML webâ servers. Systematic Biology 57: 758 â 771.
dc.identifier.citedreferenceSteel, M., and M. J. Sanderson. 2010. Characterizing phylogenetically decisive taxon coverage. Applied Mathematics Letters 23: 82 â 86.
dc.identifier.citedreferenceStevens, P. F. 2001 onward. Angiosperm Phylogeny Website, version 9, June 2008 [and more or less continuously updated since]. Website http://www.mobot.org/MOBOT/research/APweb/.
dc.identifier.citedreferenceSwofford, D. L. 2002. PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4b10. Sinauer, Sunderland, Massachusetts, USA.
dc.identifier.citedreferenceSytsma K. J. 1994. DNA extraction from recalcitrant plants: Long, pure, and simple? In Adams R. P., Miller J. S., Golenberg E. M., Adams J. E. [eds.], Conservation of plant genes II: Intellectual property rights and DNA utilization, 69 â 81. Missouri Botanical Garden, St. Louis, Missouri, USA.
dc.identifier.citedreferenceSytsma, K. J., A. Litt, M. L. Zjhra, J. C. Pires, M. Nepokroeff, E. Conti, J. Walker, and P. G. Wilson. 2004. Clades, clocks, and continents: historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the southern hemisphere. International Journal of Plant Sciences 165 ( 4 supplement ): S85 â S105.
dc.identifier.citedreferenceSytsma, K. J., J. Morawetz, J. C. Pires, M. Nepokroeff, E. Conti, M. Zjhra, J. C. Hall, and M. W. Chase. 2002. Urticalean rosids: Circumscription, rosid ancestry, and phylogenetics based on rbcL, trnLâ F, and ndhF sequences. American Journal of Botany 89: 1531 â 1546.
dc.identifier.citedreferenceTalavera, G., and J. Castresana. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564 â 577.
dc.identifier.citedreferenceTank, D. C., and M. J. Donoghue. 2010. Phylogeny and phylogenetic nomenclature of the Campanulidae based on an expanded sample of genes and taxa. Systematic Botany 35: 425 â 441.
dc.identifier.citedreferenceVon Balthazar, M., and J. Schönenberger. 2009. Floral structure and organization in Platanaceae. International Journal of Plant Sciences 170: 210 â 225.
dc.identifier.citedreferenceWang, H., M. J. Moore, P. S. Soltis, C. D. Bell, S. Brockington, R. Alexandre, and C. C. Davis el al. 2009. Rosid radiation and the rapid rise of angiospermâ dominated forests. Proceedings of the National Academy of Sciences, USA 106: 3853 â 3858.
dc.identifier.citedreferenceWang, W., A.â M. Lu, Y. Ren, M. E. Endress, and Z.â D. Chen. 2009. Phylogeny and classification of Ranunculales: Evidence from four molecular loci and morphological data. Perspectives in Plant Ecology, Evolution and Systematics 11: 81 â 110.
dc.identifier.citedreferenceWinkworth, R. C., J. Lundberg, and M. J. Donoghue. 2008. Toward a resolution of campanulid phylogeny, with a special reference to the placement of Dipsacales. Taxon 57: 53 â 65.
dc.identifier.citedreferenceWojciechowski, M. F., M. Lavin, and M. J. Sanderson. 2004. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many wellâ supported subclades within the family. American Journal of Botany 91: 1846 â 1862.
dc.identifier.citedreferenceWurdack, K. J., and C. C. Davis. 2009. Malpighiales phylogenetics: Gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. American Journal of Botany 96: 1551 â 1570.
dc.identifier.citedreferenceZanis, M. J., D. E. Soltis, P. S. Soltis, S. Mathews, and M. J. Donoghue. 2002. The root of the angiosperms revisited. Proceedings of the National Academy of Sciences, USA 99: 6848 â 6853.
dc.identifier.citedreferenceZhang, L.â B., and S. S. Renner. 2003. The deepest splits in Chloranthaceae as resolved by chloroplast sequences. International Journal of Plant Sciences 164 ( 5 Supplement ): S383 â S392.
dc.identifier.citedreferenceZhang, L.â B., and M. P. Simmons. 2006. Phylogeny and delimitation of the Celastrales inferred from nuclear and plastid genes. Systematic Botany 31: 122 â 137.
dc.identifier.citedreferenceZhang, L.â B., M. P. Simmons, A. Kocyan, and S. S. Renner. 2006. Phylogeny of the Cucurbitales based on DNA sequences of nine loci from three genomes: Implications for morphological and sexual system evolution. Molecular Phylogenetics and Evolution 39: 305 â 322.
dc.identifier.citedreferenceZhang, W.â H., Z.â D. Chen, J. H. Li, H.â B. Chen, and Y.â C. Tang. 2003. Phylogeny of the Dipsacales s.l. based on chloroplast trnLâ F and ndhF sequences. Molecular Phylogenetics and Evolution 26: 176 â 189.
dc.identifier.citedreferenceZhu, X.â Y., M. W. Chase, Y.â L. Qiu, H.â Z. Kong, D. L. Dilcher, J.â H. Li, and Z. D. Chen. 2007. Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids. BMC Evolutionary Biology 7: 217.
dc.identifier.citedreferenceAlbach, D. C., D. E. Soltis, M. W. Chase, D. E. Soltis. 2001. Phylogenetic placement of the enigmatic angiosperm Hydrostachys. Taxon 50: 781 â 805.
dc.identifier.citedreferenceAlverson, W. S., B. A. Whitlock, R. Nyffeler, C. Bayer, and D. A. Baum. 1999. Phylogeny of the core Malvales: Evidence from ndhF sequence data. American Journal of Botany 86: 1474 â 1486.
dc.identifier.citedreferenceAPG III [Angiosperm Phylogeny Group III]. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105 â 121.
dc.identifier.citedreferenceApplequist, W. L., and R. S. Wallace. 2001. Phylogeny of the portulacaceous cohort based on ndhF sequence data. Systematic Botany 26: 406 â 419.
dc.identifier.citedreferenceBacklund, M., B. Oxelman, and B. Bremer. 2000. Phylogenetic relationships within the Gentianales based on ndhF and rbcL sequences, with particular reference to the Loganiaceae. American Journal of Botany 87: 1029 â 1043.
dc.identifier.citedreferenceBanks, H., B. B. Klitgaard, F. Claxton, F. Forest, and P. R. Crane. 2008. Pollen morphology of the family Polygalaceae (Fabales). Botanical Journal of the Linnean Society 156: 253 â 289.
dc.identifier.citedreferenceBarkman, T. J., J. R. McNeal, S. H. Lim, G. Coat, H. B. Croom, N. D. Young, and C. W. Depamphilis. 2007. Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evolutionary Biology 7: 248.
dc.identifier.citedreferenceBayer, C., M. F. Fay, A. de Bruijn, V. Savolainen, C. M. Morton, K. Kubitzki, and M. W. Chase. 1999. Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: A combined analysis of plastid atpB and rbcL sequences. Botanical Journal of the Linnean Society 129: 267 â 303.
dc.identifier.citedreferenceBeaman, R. S., and N. Cellinese. 2010. TOLKIN: The Tree of Life Knowledge and Information Network. Website http://www.tolkin.org/.
dc.identifier.citedreferenceBell, C. D. 2004. Preliminary phylogeny of Valerianaceae (Dipsacales) inferred from nuclear and chloroplast DNA sequence data. Molecular Phylogenetics and Evolution 31: 340 â 350.
dc.identifier.citedreferenceBell, C. D., E. J. Edwards, S. T. Kim, and M. J. Donoghue. 2001. Dipsacales phylogeny based on chloroplast DNA sequences. Harvard Papers in Botany 6: 481 â 499.
dc.identifier.citedreferenceBell, C. D., D. E. Soltis, and P. Soltis. 2010. The age and diversification of angiosperms reâ revisited. American Journal of Botany 97: 1296 â 1303.
dc.identifier.citedreferenceBello, M. A., A. Bruneau, F. Forest, and J. A. Hawkins. 2009. Elusive relationships within order Fabales: Phylogenetic analyses using matK and rbcL sequence data. Systematic Botany 34: 102 â 114.
dc.identifier.citedreferenceBergthorsson, U., K. L. Adams, B. Thomason, and J. D. Palmer. 2003. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424: 197 â 201.
dc.identifier.citedreferenceBowe, L. M., and C. W. de Pamphilis. 1996. Effects of RNA editing and gene processing on phylogenetic reconstruction. Molecular Biology and Evolution 13: 1159 â 1166.
dc.identifier.citedreferenceBremer, B., K. Bremer, N. Heidari, P. Erixon, R. G. Olmstead, A. A. Anderberg, M. Källersjö, and E. Barkhordarian. 2002. Phylogenetics of asterids based on 3 coding and 3 nonâ coding chloroplast DNA markers and the utility of nonâ coding DNA at higher taxonomic levels. Molecular Phylogenetics and Evolution 24: 274 â 301.
dc.identifier.citedreferenceBrockington, S. F., R. Alexandre, J. Ramdial, M. J. Moore, S. Crawley, A. Dhingra, and K. Hilu el al. 2010. Phylogeny of the Caryophyllales sensu lato: Revisiting hypotheses on pollination biology and perianth differentiation in the Core Caryophyllales. International Journal of Plant Sciences 171: 185 â 198.
dc.identifier.citedreferenceBruneau, A., M. Mercure, G. P. Lewis, and P. S. Herendeen. 2008. Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany 86: 697 â 718.
dc.identifier.citedreferenceBurleigh, J. G., K. W. Hilu, and D. E. Soltis. 2009. Inferring phylogenies with incomplete data sets: a 5â gene, 567â taxon analysis of angiosperms. BMC Evolutionary Biology 9: 61.
dc.identifier.citedreferenceCantino, P. D., J. A. Doyle, S. W. Graham, W. S. Judd, R. G. Olmstead, D. E. Soltis, P. S. Soltis, and M. J. Donoghue. 2007. Towards a phylogenetic nomenclature of Tracheophyta. Taxon 56: 822 â 846.
dc.identifier.citedreferenceCarlson, S. E., V. Mayer, and M. J. Donoghue. 2009. Phylogenetic relationships, taxonomy, and morphological evolution in Dipsacaceae (Dipsacales) inferred by DNA sequence data. Taxon 58: 1075 â 1091.
dc.identifier.citedreferenceCastresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540 â 552.
dc.identifier.citedreferenceChandler, G. T., and G. M. Plunkett. 2004. Evolution in Apiales: nuclear and chloroplast markers together in (almost) perfect harmony. Botanical Journal of the Linnean Society 144: 123 â 147.
dc.identifier.citedreferenceChase, M., D. E. Soltis, D. Morgan, D. Olmsted, M. Duvall, R. Price, and H. Hills el al. 1993. Phylogenetic relationships among seed plants based on rbcL sequence data. Annals of the Missouri Botanical Garden 80: 528 â 580.
dc.identifier.citedreferenceChase M. W., Fay M. F., Devey D., Maurin O., Rønsted N., Davies J., Pillon Y. el al. 2006. Multigene analyses of monocot relationships: a summary. In Columbus J. T., Friar E. A., Porter J. M., Prince L. M., Simpson M. G. [eds.], Monocots: Comparative biology and evolution. Excluding Poales. Rancho Santa Ana Botanical Garden, Claremont, California, USA. Aliso 22: 63 â 75.
dc.identifier.citedreferenceConti, E., A. Litt, P. G. Wilson, S. A. Graham, B. G. Briggs, L. A. S. Johnson, and K. J. Sytsma. 1997. Interfamilial relationships in Myrtales: Molecular phylogeny and patterns of morphological evolution. Systematic Botany 22: 629 â 647.
dc.identifier.citedreferenceCuenoud, P., V. Savolainen, L. W. Chatrou, M. Powell, R. J. Grayer, and M. W. Chase. 2002. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. American Journal of Botany 89: 132 â 144.
dc.identifier.citedreferenceDavies, T. J., T. G. Barraclough, M. W. Chase, P. S. Soltis, D. E. Soltis, and V. Savolainen. 2004. A supertree of the angiosperms. Proceedings of the National Academy of Sciences, USA 101: 1904 â 1909.
dc.identifier.citedreferenceDavis, C. C., W. R. Anderson, and M. J. Donoghue. 2001. Phylogeny of Malpighiaceae: Evidence from chloroplast ndhF and trnLâ F nucleotide sequences. American Journal of Botany 88: 1830 â 1846.
dc.identifier.citedreferenceDavis, C. C., M. Latvis, D. L. Nickrent, K. J. Wurdack, and D. A. Baum. 2007. Floral gigantism in Rafflesiaceae. Science 315: 1812.
dc.identifier.citedreferenceDavis, C. C., C. O. Webb, K. J. Wurdack, C. A. Jaramillo, and M. J. Donoghue. 2005. Explosive radiation of Malpighiales supports a Midâ Cretaceous origin of modern tropical rain forests. American Naturalist 165: E36 â E65.
dc.identifier.citedreferenceDavis, C. C., and K. J. Wurdack. 2004. Hostâ toâ parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305: 676 â 678.
dc.identifier.citedreferenceDonoghue, M. J., C. D. Bell, and R. C. Winkworth. 2003. The evolution of reproductive characters in Dipsacales. International Journal of Plant Sciences 164 ( 5 supplement ): S453 â S464.
dc.identifier.citedreferenceDonoghue, M. J., T. Eriksson, P. A. Reeves, and R. G. Olmstead. 2001. Phylogeny and phylogenetic taxonomy of Dipsacales, with special reference to Sinadoxa and Tetradoxa (Adoxaceae). Harvard Papers in Botany 6: 459 â 479.
dc.identifier.citedreferenceDoyle, J. J., and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11 â 15.
dc.identifier.citedreferenceDoyle, J. A., H. Eklund, and P. S. Herendeen. 2003. Floral evolution in Chloranthaceae: Implications of a morphological phylogenetic analysis. International Journal of Plant Sciences 164: S365 â S382.
dc.identifier.citedreferenceEklund, H., J. A. Doyle, and P. S. Herendeen. 2004. Morphological phylogenetic analysis of living and fossil Chloranthaceae. International Journal of Plant Sciences 165: 107 â 151.
dc.identifier.citedreferenceEndress, P. K., and M. L. Matthews. 2006. First steps towards a floral structural characterization of the major rosid subclades. Plant Systematics and Evolution 260: 223 â 251.
dc.identifier.citedreferenceEvans, R. C., L. A. Alice, C. S. Campbell, T. A. Dickinson, and E. A. Kellogg. 2000. The granuleâ bound starch synthase (GBSSI) gene in the Rosaceae: multiple loci and phylogenetic utility. Molecular Phylogenetics and Evolution 17: 388 â 400.
dc.identifier.citedreferenceFan, C., and Q.â Y. Xiang. 2003. Phylogenetic analyses of Cornales based on 26S rRNA and combined 26S rRNAâ matK â rbcL sequence data. American Journal of Botany 90: 1357 â 1372.
dc.identifier.citedreferenceFelsenstein, J. 1973. Maximum likelihood and minimumâ steps methods for estimating evolutionary trees from data on discrete characters. Systematic Zoology 22: 240 â 249.
dc.identifier.citedreferenceFelsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783 â 791.
dc.identifier.citedreferenceFelsenstein, J. 2005. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, Washington, USA. Website http://www.phylip.com/.
dc.identifier.citedreferenceFrasier, C. L. 2009. Evolution and systematics of the angiosperm order Gentianales with an inâ depth focus on Loganiaceae and its speciesâ rich and toxic genus Strychnos. PhD dissertation, Rutgers University, New Brunswick, New Jersey, USA.
dc.identifier.citedreferenceFunk, V. A., A. Susanne, T. F. Stuessy, and R. J. Bayer, eds. 2009. Systematics, evolution, and biogeography of Compositae. International Association for Plant Taxonomy, Institute of Botany, University of Vienna. Vienna, Austria.
dc.identifier.citedreferenceGadek, P. A., E. S. Fernando, C. J. Quinn, S. B. Hoot, T. Terrazas, M. C. Sheahan, and M. W. Chase. 1996. Sapindales: Molecular delimitation and infraordinal groups. American Journal of Botany 83: 802 â 811.
dc.identifier.citedreferenceGivnish, T. J., J. H. Leebensâ Mack, M. Ames Sevillano, J. R. McNeal, P. R. Steele, J. I. Davis, and C. Ané el al. 2010. Assembling the tree of the monocotyledons: Plastome sequence phylogeny and evolution of Poales. Annals of the Missouri Botanical Garden 97: 584 â 616.
dc.identifier.citedreferenceGolubchik, T., M. J. Wise, S. Easteal, and L. S. Jermiin. 2007. Mind the gaps: Evidence of bias in estimates of multiple sequence alignments. Molecular Biology and Evolution 24: 2433 â 2442.
dc.identifier.citedreferenceGraham S. W., Zgurski J. M., McPherson M. A., Cherniawsky D. M., Saarela J. M., Horne E. F. C., Smith S. Y. el al. 2006. Robust inference of monocot deep phylogeny using an expanded multigene plastid data set. In Columbus J. T., Friar E. A., Porter J. M., Prince L. M., Simpson M. G. [eds.], Monocots: Comparative biology and evolution. Excluding Poales. Rancho Santa Ana Botanical Garden, Claremont, California, USA. Aliso 22: 3 â 21.
dc.identifier.citedreferenceHall, J. C., H. H. Iltis, and K. J. Sytsma. 2004. Molecular phlyogenetics of core Brassicales, placement of orphan genera Emblingia, Forchammeria, Tirania, and character evolution. Systematic Botany 29: 654 â 669.
dc.identifier.citedreferenceHilu, K. W., T. Borsch, K. Muller, D. E. Soltis, P. S. Soltis, V. Savolainen, and M. W. Chase el al. 2003. Angiosperm phylogeny based on matK sequence information. American Journal of Botany 90: 1758 â 1776.
dc.identifier.citedreferenceJansen, R. K., Z. Cai, L. A. Raubeson, H. Daniell, C. W. de Pamphilis, J. Leebensâ Mack, and K. F. Müller el al. 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genomeâ scale evolutionary patterns. Proceedings of the National Academy of Sciences, USA 104: 19369 â 19374.
dc.identifier.citedreferenceJian, S., P. S. Soltis, M. Gitzendanner, M. Moore, R. Li, T. Hendry, and Y. Qiu el al. 2008. Resolving an ancient, rapid radiation in Saxifragales. Systematic Biology 57: 38 â 57.
dc.identifier.citedreferenceJiao, Y., N. Wickett, S. Ayyampalayam, A. Chanderbali, L. Landherr, P. E. Ralph, and P. S. Soltis el al. In press. Phylogenomic analysis reveals ancient genome duplications in seed plant and angiosperm history. Nature.
dc.identifier.citedreferenceJudd, W. S., C. S. Campbell, E. A. Kellogg, P. F. Stevens, and M. J. Donoghue. 2008. Plant systematics: A phylogenetic approach, 3rd ed. Sinauer, Sunderland, Massachusetts, USA.
dc.identifier.citedreferenceKÃ¥rehed, J. 2001. Multiple origin of the tropical forest tree family Icacinaceae. American Journal of Botany 88: 2259 â 2274.
dc.identifier.citedreferenceKÃ¥rehed, J. 2003. The family Pennantiaceae and its relationships to Apiales. Botanical Journal of the Linnean Society 141: 1 â 24.
dc.identifier.citedreferenceKatoh, K., and H. Toh. 2008. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9: 286 â 298.
dc.identifier.citedreferenceKim, S., D. E. Soltis, P. S. Soltis, M. Zanis, and Y. Suh. 2004. Phylogenetic relationships among earlyâ diverging eudicots: Evidence from atpB, rbcL, 18S rDNA, and 26S rDNA sequences. Molecular Phylogenetics and Evolution 31: 16 â 30.
dc.identifier.citedreferenceKluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis for relationships among Epicrates (Boidae, Serpentes). Systematic Zoology 38: 7 â 25.
dc.identifier.citedreferenceLecointre, G., and P. Deleporte. 2005. Total evidence requires exclusion of phylogenetically misleading data. Zoologica Scripta 34: 101 â 117.
dc.identifier.citedreferenceLeebensâ Mack, J., L. A. Raubeson, L. Cui, J. V. Kuehl, M. H. Fourcade, T. W. Chumley, and J. L. Boore el al. 2005. Identifying the basal angiosperm node in chloroplast genome phylogenies: Sampling one’s way out of the Felsenstein zone. Molecular Biology and Evolution 22: 1948 â 1963.
dc.identifier.citedreferenceLi, R.â Q., Z.â D. Chen, Y.â P. Hong, and A.â M. Lu. 2002. Phylogenetic relationships of the â higherâ hamamelids based on chloroplast trnLâ F sequences. Acta Botanica Sinica 44: 1462 â 1468.
dc.identifier.citedreferenceLundberg, J. 2001. Phylogenetic studies in the euasterids II with particular reference to Asterales and Escalloniaceae. Ph.D. dissertation, Uppsala University, Uppsala, Sweden.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.