Show simple item record

Range position and climate sensitivity: The structure of among‐population demographic responses to climatic variation

dc.contributor.authorAmburgey, Staci M.
dc.contributor.authorMiller, David A. W.
dc.contributor.authorCampbell Grant, Evan H.
dc.contributor.authorRittenhouse, Tracy A. G.
dc.contributor.authorBenard, Michael F.
dc.contributor.authorRichardson, Jonathan L.
dc.contributor.authorUrban, Mark C.
dc.contributor.authorHughson, Ward
dc.contributor.authorBrand, Adrianne B.
dc.contributor.authorDavis, Christopher J.
dc.contributor.authorHardin, Carmen R.
dc.contributor.authorPaton, Peter W. C.
dc.contributor.authorRaithel, Christopher J.
dc.contributor.authorRelyea, Rick A.
dc.contributor.authorScott, A. Floyd
dc.contributor.authorSkelly, David K.
dc.contributor.authorSkidds, Dennis E.
dc.contributor.authorSmith, Charles K.
dc.contributor.authorWerner, Earl E.
dc.date.accessioned2018-02-05T16:46:03Z
dc.date.available2019-03-01T21:00:18Zen
dc.date.issued2018-01
dc.identifier.citationAmburgey, Staci M.; Miller, David A. W.; Campbell Grant, Evan H.; Rittenhouse, Tracy A. G.; Benard, Michael F.; Richardson, Jonathan L.; Urban, Mark C.; Hughson, Ward; Brand, Adrianne B.; Davis, Christopher J.; Hardin, Carmen R.; Paton, Peter W. C.; Raithel, Christopher J.; Relyea, Rick A.; Scott, A. Floyd; Skelly, David K.; Skidds, Dennis E.; Smith, Charles K.; Werner, Earl E. (2018). "Range position and climate sensitivity: The structure of among‐population demographic responses to climatic variation." Global Change Biology 24(1): 439-454.
dc.identifier.issn1354-1013
dc.identifier.issn1365-2486
dc.identifier.urihttps://hdl.handle.net/2027.42/142087
dc.description.abstractSpecies’ distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species’ climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long‐term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long‐term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species’ climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species‐interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the need to measure demographic responses to changing climate.Demographic processes and climate interact and vary across a species’ range to determine how species’ distributions will respond to climate change. We predicted that populations at the extremes of a species’ climate envelope are most sensitive to climate shifts. We tested this using a dynamic species distribution model linking demographic rates to variation in climate for wood frogs (Lithobates sylvaticus) in North America. Sensitivity to changes in climate cannot be predicted simply by knowing locations within the species’ climate envelope.
dc.publisherChapman and Hall
dc.publisherWiley Periodicals, Inc.
dc.subject.otherrange shifts
dc.subject.otherspecies distribution model
dc.subject.otherstate‐space model
dc.subject.otherwood frog
dc.subject.otherbioclimatic envelope model
dc.subject.otherclimate change
dc.subject.otherLithobates sylvaticus
dc.titleRange position and climate sensitivity: The structure of among‐population demographic responses to climatic variation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142087/1/gcb13817.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142087/2/gcb13817_am.pdf
dc.identifier.doi10.1111/gcb.13817
dc.identifier.sourceGlobal Change Biology
dc.identifier.citedreferenceOedekoven, C. S., Elston, D. A., Harrison, P. J., Brewer, M. J., Buckland, S. T., Johnston, A., … Pearce‐Higgins, J. W. ( 2017 ). Attributing changes in the distribution of species abundance to weather variables using the example of British breeding birds. Methods in Ecology and Evolution (online early view).
dc.identifier.citedreferenceKöhler, A., Sadowska, J., Olszewska, J., Trzeciak, P., Berger‐Tal, O., & Tracy, C. R. ( 2011 ). Staying warm or moist? Operative temperature and thermal preferences of common frogs ( Rana temporaria ), and effects on locomotion. Herpetological Journal, 21, 17 – 26.
dc.identifier.citedreferenceLarson, D. J., Middle, L., Vu, H., Zhang, W., Serianni, A. S., Duman, J., & Barnes, B. M. ( 2014 ). Wood frog adaptations to overwintering in Alaska: New limits to freezing tolerance. Journal of Experimental Biology, 217, 2193 – 2200.
dc.identifier.citedreferenceLaugen, A. T., Laurila, A., Räsänen, K., & Merilä, J. ( 2003 ). Latitudinal countergradient variation in the common frog ( Rana temporaria ) development rate – Evidence for local adaptation. Journal of Evolutionary Biology, 16, 996 – 1005.
dc.identifier.citedreferenceMacArthur, R. H. ( 1972 ). Geographical ecology: Patterns in the distribution of species. New York, NY: Harper and Row.
dc.identifier.citedreferenceMacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., & Hines, J. E. ( 2006 ). Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Burlington, MA: Academic Press.
dc.identifier.citedreferenceManis, M. L., & Claussen, D. L. ( 1986 ). Environmental and genetic influences on the physiology of Rana sylvatica. Journal of Thermal Biology, 11, 31 – 36.
dc.identifier.citedreferenceMeehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, A. T., Gaye, A. T., Gregory, J. M., … Chen, Z. ( 2007 ). Global climate projections. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (pp. 747 – 845 ). Cambridge, UK and New York, NY: Cambridge University Press.
dc.identifier.citedreferenceMenge, B. A., & Olson, A. M. ( 1990 ). Role of scale and environmental factors in regulation of community structure. Trends in Ecology and Evolution, 5, 52 – 57.
dc.identifier.citedreferenceMerow, C., Latimer, A. M., Wilson, A. M., McMahon, S. M., Rebelo, A. G., & Silander, J. A. Jr ( 2014 ). On using integral projection models to generate demographically driven predictions of species’ distributions: Development and validation using sparse data. Ecography, 37, 1167 – 1183.
dc.identifier.citedreferenceNational Climatic Data Center, NOAA. ( 2015 ). Standardized precipitation index. Retrieved from https://www.ncdc.noaa.gov/monitoring-references/dyk/spi-description
dc.identifier.citedreferenceNormand, S., Zimmermann, N. E., Schurr, F. M., & Lischke, H. ( 2014 ). Demography as the basis for understanding and predicting range dynamics. Ecography, 37, 1149 – 1154.
dc.identifier.citedreferenceO’Connor, J. H., & Rittenhouse, T. A. G. ( 2016 ). Snow cover and late fall movement influence wood frog survival during an unusually cold winter. Oecologia, 181, 635 – 644.
dc.identifier.citedreferenceParmesan, C., Root, T. L., & Willig, M. R. ( 2000 ). Impacts of extreme weather and climate on terrestrial biota. Bulletin of the American Meteorological Society, 81, 443 – 450.
dc.identifier.citedreferencePearson, R. G., & Dawson, T. P. ( 2003 ). Predicting the impacts of climate change on the distribution of species: Are bioclimatic envelope models useful? Global Ecology and Biogeography, 12, 361 – 371.
dc.identifier.citedreferencePechmann, J. H. K., Scott, D. E., Gibbons, J. W., & Semlitsch, R. D. ( 1989 ). Influence of wetland hydroperiod on diversity and abundance of metamorphosing juvenile amphibians. Wetlands Ecology and Management, 1, 3 – 11.
dc.identifier.citedreferencePlummer, M. ( 2003 ). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). Vienna, Austria.
dc.identifier.citedreferenceR Core Team ( 2016 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org
dc.identifier.citedreferenceRanvestel, A. W., Lips, K. R., Pringle, C. M., Whiles, M. R., & Bixby, R. J. ( 2004 ). Neotropical tadpoles influence stream benthos: Evidence for the ecological consequences of decline in amphibian populations. Freshwater Biology, 49, 274 – 285.
dc.identifier.citedreferenceRedmer, M., & Trauth, S. E. ( 2005 ). Rana sylvatica LeConte, 1825. Wood frog. In M. Lannoo (Ed.), Amphibian declines: The conservation status of United States species (pp. 590 – 593 ). Berkeley and Los Angeles, CA: University of California Press.
dc.identifier.citedreferenceRelyea, R. A. ( 2002 ). Costs of phenotypic plasticity. The American Naturalist, 159, 272 – 282.
dc.identifier.citedreferenceRittenhouse, T. A. G., & Semlitsch, R. D. ( 2007 ). Postbreeding habitat use of wood frogs in a Missouri forest. Journal of Herpetology, 41, 645 – 653.
dc.identifier.citedreferenceRittenhouse, T. A. G., Semlitsch, R. D., & Thompson, F. R. III ( 2009 ). Survival costs associated with wood frog breeding migrations: Effects of timber harvest and drought. Ecology, 90, 1620 – 1630.
dc.identifier.citedreferenceRoss, B. E., Hooten, M. B., DeVink, J., & Koons, D. N. ( 2015 ). Combined effects of climate, predation, and density dependence on Greater and Lesser Scaup population dynamics. Ecological Applications, 25, 1606 – 1617.
dc.identifier.citedreferenceSexton, J. P., McIntyre, P. J., Angert, A. L., & Rice, K. J. ( 2009 ). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40, 415 – 436.
dc.identifier.citedreferenceSkidds, D. E., Golet, F. C., Paton, P. W. C., & Mitchell, J. C. ( 2007 ). Habitat correlates of reproductive effort in wood frogs and spotted salamanders in an urbanizing watershed. Journal of Herpetology, 41, 439 – 450.
dc.identifier.citedreferenceSmith, M. A., & Green, D. M. ( 2005 ). Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations? Ecography, 28, 110 – 128.
dc.identifier.citedreferenceStorey, K. B. ( 1987 ). Organ‐specific metabolism during freezing and thawing in a freeze‐tolerant frog. American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology, 253, R292 – R297.
dc.identifier.citedreferenceStorey, K. B., & Storey, J. M. ( 1986 ). Freeze tolerance and intolerance as strategies of winter survival in terrestrially‐hibernating amphibians. Comparative Biochemistry and Physiology, 83A, 613 – 617.
dc.identifier.citedreferenceStuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S. L., Fischman, D. I., & Waller, R. W. ( 2004 ). Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783 – 1786.
dc.identifier.citedreferenceSu, Y., & Yajima, M. ( 2015 ). R2jags: Using R to Run ‘JAGS’. R package version 0.5‐7. Retrieved from https://CRAN.R-project.org/package=R2jags
dc.identifier.citedreferenceThomas, C. D. ( 2010 ). Climate, climate change and range boundaries. Diversity and Distributions, 16, 488 – 495.
dc.identifier.citedreferenceThuiller, W., Albert, C., Araújo, M. B., Berry, P. M., Cabeza, M., Guisan, A., … Sykes, M. T. ( 2008 ). Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution, Systematics, 9, 137 – 152.
dc.identifier.citedreferenceThuiller, W., Lavorel, S., & Araújo, M. B. ( 2005 ). Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography, 14, 347 – 357.
dc.identifier.citedreferenceThuiller, W., Münkemüller, T., Schiffers, K. H., Georges, D., Dullinger, S., Eckhart, V. M., … Schurr, F. M. ( 2014 ). Does probability of occurrence relate to population dynamics? Ecography, 37, 1155 – 1166.
dc.identifier.citedreferenceTingley, M. W., Monahan, W. B., Beissinger, S. R., & Moritz, C. ( 2009 ). Birds track their Grinellian niche throughout a century of climate change. Proceedings of the National Academy of Sciences of the United States of America, 106, 19637 – 19643.
dc.identifier.citedreferenceUnited State Geological Survey (USGS) National Amphibian Atlas ( 2014 ) Wood frog (Lithobates sylvaticus). Version Number 3.0. Laurel, MD: USGS Patuxent Wildlife Research Center. Retrieved from www.pwrc.usgs.gov/naa
dc.identifier.citedreferenceUrban, M. C., Richardson, J. L., & Freidenfelds, N. A. ( 2014 ). Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evolutionary Applications, 7, 88 – 103.
dc.identifier.citedreferenceUrban, M. C., Zarnetske, P. L., & Skelly, D. K. ( 2013 ). Moving forward: Dispersal and species interactions determine biotic responses to climate change. Annals of the New York Academy of Sciences, 1297, 44 – 60.
dc.identifier.citedreferenceWerner, E. E., Relyea, R. A., Yurewicz, K. L., Skelly, D. K., & Davis, C. J. ( 2009 ). Comparative landscape dynamics of two anuran species: Climate‐driven interaction of local and regional processes. Ecological Monographs, 79, 503 – 523.
dc.identifier.citedreferenceWilliams, J., & Jackson, S. T. ( 2007 ). Novel climates, no‐analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 5, 475 – 482.
dc.identifier.citedreferenceZurell, D., Jeltsch, F., Dormann, C. F., & Schröder, B. ( 2009 ). Static species distribution models in dynamically changing systems: How good can predictions really be? Ecography, 32, 733 – 744.
dc.identifier.citedreferenceAdams, M. J., Miller, D. A. W., Muths, E., Corn, P. S., Grant, E. H. C., Bailey, L. L., … Walls, S. C. ( 2013 ). Trends in amphibian occupancy in the United States. PLoS ONE, 8, e64347.
dc.identifier.citedreferenceAmburgey, S. A., Bailey, L. L., Murphy, M., Muths, E., & Funk, W. C. ( 2014 ). The effects of hydropattern and predator communities on amphibian occupancy. Canadian Journal of Zoology, 92, 927 – 937.
dc.identifier.citedreferenceAmburgey, S., Funk, W. C., Murphy, M., & Muths, E. ( 2012 ). Effects of hydroperiod duration on survival, developmental rate, and size at metamorphosis in boreal chorus frog tadpoles ( Pseudacris maculata ). Herpetologica, 68, 456 – 467.
dc.identifier.citedreferenceAnders, A. D., & Post, E. ( 2006 ). Distribution‐wide effects of climate on population densities of a declining migratory landbird. Journal of Animal Ecology, 75, 221 – 227.
dc.identifier.citedreferenceAraújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. ( 2005 ). Validation of species‐climate impact models under climate change. Global Change Biology, 11, 1 – 10.
dc.identifier.citedreferenceAraújo, M. B., & Peterson, A. T. ( 2012 ). Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 1527 – 1539.
dc.identifier.citedreferenceBauder, E. T. ( 2005 ). The effects of an unpredictable precipitation regime on vernal pool hydrology. Freshwater Ecology, 50, 2129 – 2135.
dc.identifier.citedreferenceBeebee, T. J. C. ( 1996 ). Ecology and conservation of amphibians. London, UK: Chapman and Hall.
dc.identifier.citedreferenceBeissinger, S. R., & Westphal, M. I. ( 1998 ). On the use of demographic models of population viability in endangered species management. The Journal of Wildlife Management, 62, 821 – 841.
dc.identifier.citedreferenceBenard, M. F. ( 2015 ). Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing. Global Change Biology, 21, 1058 – 1065.
dc.identifier.citedreferenceBerven, K. A. ( 1982a ). The genetic basis of altitudinal variation in the wood frog Rana sylvatica. II. An experimental analysis of life history traits. Evolution, 36, 962 – 983.
dc.identifier.citedreferenceBerven, K. A. ( 1982b ). The genetic basis of altitudinal variation in the wood frog Rana sylvatica. I. An experimental analysis of life history traits. Evolution, 36, 962 – 983.
dc.identifier.citedreferenceBerven, K. A. ( 2009 ). Density dependence in the terrestrial stage of wood frogs: Evidence from a 21‐year population study. Copeia, 2, 328 – 338.
dc.identifier.citedreferenceBerven, K. A., & Grudzien, T. A. ( 1990 ). Dispersal in the wood frog ( Rana sylvatica ): Implications for genetic population structure. Evolution, 44, 2047 – 2056.
dc.identifier.citedreferenceBiek, R., Funk, W. C., Maxell, B. A., & Mills, L. S. ( 2002 ). What is missing in amphibian decline research: Insights from ecological sensitivity analysis. Conservation Biology, 16, 728 – 734.
dc.identifier.citedreferenceBilota, R., Bell, J. E., Shepherd, E., & Arguez, A. ( 2015 ). Calculation and evaluation of an air‐freezing index for the 1981–2019 climate normals period in the coterminous United States. Journal of Applied Meteorology and Climatology, 54, 69 – 76.
dc.identifier.citedreferenceBoswell, J. S., & Olyphant, G. A. ( 2007 ). Modeling the hydrologic response of groundwater dominated wetlands to transient boundary conditions: Implications for wetland restoration. Journal of Hydrology, 332, 467 – 476.
dc.identifier.citedreferenceBrooks, R. T. ( 2004 ). Weather‐related effects on woodland vernal pool hydrology and hydroperiod. Wetlands, 24, 104 – 114.
dc.identifier.citedreferenceBuckland, S. T., Newman, K. B., Thomas, L., & Koesters, N. B. ( 2004 ). State‐space models for the dynamics of wild animal populations. Ecological Modelling, 171, 157 – 175.
dc.identifier.citedreferenceBurrows, M. T., Schoeman, D. S., Richardson, A. J., Molinos, J. G., Hoffman, A., Buckley, L. B., … Poloczanska, E. S. ( 2014 ). Geographical limits to species‐range shifts are suggested by climate velocity. Nature, 507, 492 – 507.
dc.identifier.citedreferenceCahill, A. E., Aiello‐Lammens, M. E., Fisher‐Reid, M. C., Hua, X., Karanewsky, C. J., Ryu, H. Y., … Wiens, J. J. ( 2014 ). Causes of warm‐edge range limits: Systematic review, proximate factors and implications for climate change. Journal of Biogeography, 41, 429 – 442.
dc.identifier.citedreferenceCorn, P. S. ( 2005 ). Climate change and amphibians. Animal Biodiversity and Conservation, 28, 59 – 67.
dc.identifier.citedreferenceCostanzo, J. P., Irwin, J. T., & Lee, R. E. Jr ( 1997 ). Freezing impairment of male reproductive behaviors of the freeze‐tolerant wood frog, Rana sylvatica. Physiological Zoology, 70, 158 – 166.
dc.identifier.citedreferenceCostanzo, J. P., & Lee, R. E. Jr ( 1992 ). Cryoprotectant production capacity of freeze‐tolerant wood frog, Rana sylvatica. Canadian Journal of Zoology, 71, 71 – 75.
dc.identifier.citedreferenceCostanzo, J. P., Lee, R. E. Jr, & Wright, M. F. ( 1991 ). Effect of cooling rate on the survival of frozen wood frogs, Rana sylvatica. Journal of Comparative Physiology, 161, 225 – 229.
dc.identifier.citedreferenceCrouch, W. B., & Paton, P. W. C. ( 2000 ). Using egg‐mass counts to monitor wood frog populations. Wildlife Society Bulletin, 28, 895 – 901.
dc.identifier.citedreferenceDaly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L., & Pasteris, P. ( 2002 ). A knowledge‐based approach to the statistical mapping of climate. Climate Research, 22, 99 – 113.
dc.identifier.citedreferenceDarwin, C. R. ( 1859 ). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London, UK: John Murray.
dc.identifier.citedreferenceDe Valpine, P., & Hastings, A. ( 2002 ). Fitting population models incorporating process noise and observation error. Ecological Monographs, 72, 57 – 76.
dc.identifier.citedreferenceDormann, C. F., Schymanski, S. J., Cabral, J., Chuine, I., Graham, C., Hartig, F., … Singer, A. ( 2012 ). Correlation and process in species distribution models: Bridging a dichotomy. Journal of Biogeography, 39, 2119 – 2131.
dc.identifier.citedreferenceDrexler, J. Z., Synder, R. L., Spano, D., & Paw, U. K. T. ( 2004 ). A review of models and micrometerological methods used to estimate wetland evapotranspiration. Hydrological Processes, 18, 2071 – 2101.
dc.identifier.citedreferenceDuellman, W. E. (Ed.) ( 1999 ). Patterns of distribution of amphibians. Baltimore, MD: Johns Hopkins University Press.
dc.identifier.citedreferenceEarl, J. E., & Semlitsch, R. D. ( 2012 ). Reciprocal subsidies in ponds: Does leaf input increase frog biomass export? Oecologia, 170, 1077 – 1087.
dc.identifier.citedreferenceEnvironment Canada ( 2015 ). Canadian monthly climate data. Retrieved from http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
dc.identifier.citedreferenceFranklin, J. ( 2010 ). Moving beyond static species distribution models in support of conservation biogeography. Diversity and Distributions, 16, 321 – 330.
dc.identifier.citedreferenceGaston, K. J. ( 2009 ). Geographic range limits: Achieving synthesis. Proceedings of the Royal Society B: Biological Society, 276, 1395 – 1406.
dc.identifier.citedreferenceGelman, A., & Rubin, D. B. ( 1992 ). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457 – 511.
dc.identifier.citedreferenceGibbs, J. P., & Breisch, A. R. ( 2001 ). Climate warming and calling phenology of frogs near Ithaca, New York, 1990–1999. Conservation Biology, 15, 1175 – 1178.
dc.identifier.citedreferenceGrant, E. H. C., Jung, R. E., Nichols, J. D., & Hines, J. E. ( 2005 ). Double‐observer approach to estimating egg mass abundance of pool‐breeding amphibians. Wetlands Ecology and Management, 13, 305 – 320.
dc.identifier.citedreferenceGrant, E. H. C., Miller, D. A. W., Schmidt, B. R., Adams, M. J., Amburgey, S. M., Chambert, T., … Muths, E. ( 2016 ). Quantitative evidence for the effects of multiple drivers on continental‐scale amphibian declines. Scientific Reports, 6, 25626.
dc.identifier.citedreferenceGreen, A. W., & Bailey, L. L. ( 2015 ). Reproductive strategy and carry‐over effects for species with complex life histories. Population Ecology, 57, 175 – 184.
dc.identifier.citedreferenceGreen, A. W., Hooten, M. B., Grant, E. H. C., & Bailey, L. L. ( 2013 ). Evaluating breeding and metamorph occupancy and vernal pool management effects for wood frogs using a hierarchical model. Journal of Animal Ecology, 50, 1116 – 1123.
dc.identifier.citedreferenceGrinnell, J. ( 1917 ). The niche‐relationships of the California Thrasher. The Auk, 34, 427 – 433.
dc.identifier.citedreferenceGuisan, A., & Zimmermann, N. E. ( 2000 ). Predictive habitat distribution models in ecology. Ecological Modeling, 135, 147 – 186.
dc.identifier.citedreferenceHarper, E. B., Rittenhouse, T. A. G., & Semlitsch, R. D. ( 2008 ). Demographic consequences of terrestrial habitat loss for pool‐breeding amphibians: Predicting extinction risks associated with inadequate size of buffer zones. Conservation Biology, 22, 1205 – 1215.
dc.identifier.citedreferenceHijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. ( 2005 ). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965 – 1978.
dc.identifier.citedreferenceHijmans, R. J., & Graham, C. H. ( 2006 ). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272 – 2281.
dc.identifier.citedreferenceHilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R., & Theobald, E. J. ( 2013 ). How will biotic interactions influence climate change‐induced range shifts? Annals of the New York Academy of Sciences, 1297, 112 – 125.
dc.identifier.citedreferenceHoffman, A. A., & Parsons, P. A. ( 1997 ). Extreme environmental change and evolution. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceHutchinson, V. H., & Dupré, K. ( 1992 ). Thermoregulation. In M. E. Feder, & W. W. Burggren (Eds.), Environmental physiology of the amphibia (pp. 206 – 249 ). Chicago, OH: University of Chicago Press.
dc.identifier.citedreferenceIUCN (International Union for Conservation of Nature), Conservation International, and NatureServe ( 2008 ). Lithobates sylvaticus. In: IUCN 2015, The IUCN Red List of Threatened Species. Version 3.1. Retrieved from http://www.iucnredlist.org (Downloaded on 20 Nov 2015).
dc.identifier.citedreferenceKeith, D. A., Akçakaya, H. R., Thuiller, W., Midgley, G. F., Pearson, R. G., Phillips, S. J., … Rebelo, T. G. ( 2008 ). Predicting extinction risks under climate change: Coupling stochastic population models with dynamic bioclimatic habitat models. Biology Letters, 4, 560 – 563.
dc.identifier.citedreferenceKéry, M., & Schaub, M. ( 2011 ). Chapter 5 – State space models for population counts. In Bayesian population analysis using WinBUGS: A hierarchical perspective (pp. 115 – 132 ). Waltham, MA: Academic Press.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.