Show simple item record

Changes to the Intestinal Microbiome With Parenteral Nutrition

dc.contributor.authorDemehri, Farokh R.
dc.contributor.authorBarrett, Meredith
dc.contributor.authorTeitelbaum, Daniel H.
dc.date.accessioned2018-02-05T16:46:12Z
dc.date.available2018-02-05T16:46:12Z
dc.date.issued2015-12
dc.identifier.citationDemehri, Farokh R.; Barrett, Meredith; Teitelbaum, Daniel H. (2015). "Changes to the Intestinal Microbiome With Parenteral Nutrition." Nutrition in Clinical Practice 30(6): 798-806.
dc.identifier.issn0884-5336
dc.identifier.issn1941-2452
dc.identifier.urihttps://hdl.handle.net/2027.42/142098
dc.publisherSAGE Publications
dc.publisherWiley Periodicals, Inc.
dc.subject.othernutritional support
dc.subject.otherparenteral nutrition
dc.subject.otherenteral nutrition
dc.subject.othermicrobiome
dc.subject.otherliver disease
dc.subject.othersurgery
dc.subject.otherbacterial translocation
dc.subject.otherinflammation
dc.subject.othermicrobiota
dc.titleChanges to the Intestinal Microbiome With Parenteral Nutrition
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Surgery, University of Michigan Health System, Ann Arbor, Michigan
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142098/1/ncp0798.pdf
dc.identifier.doi10.1177/0884533615609904
dc.identifier.sourceNutrition in Clinical Practice
dc.identifier.citedreferenceMarteau P Pochart P Doré J Béra‐Maillet C Bernalier A Corthier G. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol. 2001; 67 ( 10 ): 4939 – 4942.
dc.identifier.citedreferenceHodin CM Visschers RG Rensen SS et al. Total parenteral nutrition induces a shift in the Firmicutes to Bacteroidetes ratio in association with Paneth cell activation in rats. J Nutr. 2012; 142 ( 12 ): 2141 – 2147.
dc.identifier.citedreferenceHarvey RB Andrews K Droleskey RE et al. Qualitative and quantitative comparison of gut bacterial colonization in enterally and parenterally fed neonatal pigs. Curr Issues Intest Microbiol. 2006; 7 ( 2 ): 61 – 64.
dc.identifier.citedreferenceBentley DW Nichols RL Condon RE Gorbach SL. The microflora of the human ileum and intra‐abdominal colon: results of direct needle aspiration at surgery and evaluation of the technique. J Lab Clin Med. 1972; 79 ( 3 ): 421 – 429.
dc.identifier.citedreferenceMartindale RG McClave SA Taylor B Lawson CM. Perioperative nutrition: what is the current landscape? JPEN J Parenter Enteral Nutr. 2013; 37 ( 5 suppl ): 5S – 20S.
dc.identifier.citedreferenceShiga H Kajiura T Shinozaki J et al. Changes of faecal microbiota in patients with Crohn’s disease treated with an elemental diet and total parenteral nutrition. Dig Liver Dis. 2012; 44 ( 9 ): 736 – 742.
dc.identifier.citedreferenceEngstrand Lilja H Wefer H Nystrom N Finkel Y Engstrand L. Intestinal dysbiosis in children with short bowel syndrome is associated with impaired outcome. Microbiome. 2015; 3: 18.
dc.identifier.citedreferenceDavid LA Maurice CF Carmody RN et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505 ( 7484 ): 559 – 563.
dc.identifier.citedreferenceWu GD Compher C Chen EZ et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet‐dependent gut microbiota metabolite production [published online November 26, 2014]. Gut. doi:10.1136/gutjnl‐2014‐308209.
dc.identifier.citedreferenceWong JM Esfahani A Singh N et al. Gut microbiota, diet, and heart disease. J AOAC Int. 2012; 95 ( 1 ): 24 – 30.
dc.identifier.citedreferenceSinclair JL Alexander M. Role of resistance to starvation in bacterial survival in sewage and lake water. Appl Environ Microbiol. 1984; 48 ( 2 ): 410 – 415.
dc.identifier.citedreferenceCostello EK Gordon JI Secor SM Knight R. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J. 2010; 4 ( 11 ): 1375 – 1385.
dc.identifier.citedreferenceDeplancke B Vidal O Ganessunker D Donovan SM Mackie RI Gaskins HR. Selective growth of mucolytic bacteria including Clostridium perfringens in a neonatal piglet model of total parenteral nutrition. Am J Clin Nutr. 2002; 76 ( 5 ): 1117 – 1125.
dc.identifier.citedreferenceNovak N Bieber T. 2. Dendritic cells as regulators of immunity and tolerance. J Allergy Clin Immunol. 2008; 121 ( 2 suppl ): S370 – S374; quiz S413.
dc.identifier.citedreferenceChichlowski M Hale LP. Bacterial‐mucosal interactions in inflammatory bowel disease: an alliance gone bad. Am J Physiol Gastrointest Liver Physiol. 2008; 295 ( 6 ): G1139 – G1149.
dc.identifier.citedreferenceAbreu MT. Toll‐like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nature Rev Immunol. 2010; 10 ( 2 ): 131 – 144.
dc.identifier.citedreferenceKarrasch T Jobin C. NF‐kappaB and the intestine: friend or foe? Inflamm Bowel Dis. 2008; 14 ( 1 ): 114 – 124.
dc.identifier.citedreferenceLacaille F Gupte G Colomb V et al. Intestinal failure‐associated liver disease: a position paper of the ESPGHAN Working Group of Intestinal Failure and Intestinal Transplantation. J Pediatr Gastroenterol Nutr. 2015; 60 ( 2 ): 272 – 283.
dc.identifier.citedreferenceMutanen A Lohi J Heikkila P Koivusalo AI Rintala RJ Pakarinen MP. Persistent abnormal liver fibrosis after weaning off parenteral nutrition in pediatric intestinal failure. Hepatology. 2013; 58 ( 2 ): 729 – 738.
dc.identifier.citedreferenceEl Kasmi KC Anderson AL Devereaux MW et al. Toll‐like receptor 4‐dependent Kupffer cell activation and liver injury in a novel mouse model of parenteral nutrition and intestinal injury. Hepatology. 2012; 55 ( 5 ): 1518 – 1528.
dc.identifier.citedreferenceHarris JK El Kasmi KC Anderson AL et al. Specific microbiome changes in a mouse model of parenteral nutrition associated liver injury and intestinal inflammation. PloS One. 2014; 9 ( 10 ): e110396.
dc.identifier.citedreferenceKorpela K Mutanen A Salonen A Savilahti E de Vos WM Pakarinen MP. Intestinal microbiota signatures associated with histological liver steatosis in pediatric‐onset intestinal failure [published online May 1, 2015]. JPEN J Parenter Enteral Nutr. pii:0148607115584388.
dc.identifier.citedreferenceKubota A Okada A Imura K et al. The effect of metronidazole on TPN‐associated liver dysfunction in neonates. J Pediatr Surg. 1990; 25 ( 6 ): 618 – 621.
dc.identifier.citedreferenceKelly DA. Intestinal failure‐associated liver disease: what do we know today? Gastroenterology. 2006; 130 ( 2 suppl 1 ): S70 – S77.
dc.identifier.citedreferenceRen ZG Liu H Jiang JW et al. Protective effect of probiotics on intestinal barrier function in malnourished rats after liver transplantation. Hepatobiliary Pancreat Dis Int. 2011; 10 ( 5 ): 489 – 496.
dc.identifier.citedreferenceSegawa S Wakita Y Hirata H Watari J. Oral administration of heat‐killed Lactobacillus brevis SBC8803 ameliorates alcoholic liver disease in ethanol‐containing diet‐fed C57BL/6N mice. Int J Food Microbiol. 2008; 128 ( 2 ): 371 – 377.
dc.identifier.citedreferenceVanderhoof JA Young RJ Murray N Kaufman SS. Treatment strategies for small bowel bacterial overgrowth in short bowel syndrome. J Pediatr Gastroenterol Nutr. 1998; 27 ( 2 ): 155 – 160.
dc.identifier.citedreferenceKanamori Y Sugiyama M Hashizume K Yuki N Morotomi M Tanaka R. Experience of long‐term synbiotic therapy in seven short bowel patients with refractory enterocolitis. J Pediatr Surg. 2004; 39 ( 11 ): 1686 – 1692.
dc.identifier.citedreferencePeter JV Moran JL Phillips‐Hughes J. A metaanalysis of treatment outcomes of early enteral versus early parenteral nutrition in hospitalized patients. Crit Care Med. 2005; 33 ( 1 ): 213 – 220; discussion 260‐261.
dc.identifier.citedreferenceMoore FA Feliciano DV Andrassy RJ et al. Early enteral feeding, compared with parenteral, reduces postoperative septic complications: the results of a meta‐analysis. Ann Surg. 1992; 216 ( 2 ): 172 – 183.
dc.identifier.citedreferenceBraunschweig CL Levy P Sheean PM Wang X. Enteral compared with parenteral nutrition: a meta‐analysis. Am J Clin Nutr. 2001; 74 ( 4 ): 534 – 542.
dc.identifier.citedreferenceMirtallo J Canada T Johnson D et al. Safe practices for parenteral nutrition. JPEN J Parenter Enteral Nutr. 2004; 28 ( 6 ): S39 – S70.
dc.identifier.citedreferenceZaloga GP. Parenteral nutrition in adult inpatients with functioning gastrointestinal tracts: assessment of outcomes. Lancet. 2006; 367 ( 9516 ): 1101 – 1111.
dc.identifier.citedreferenceDoig GS Heighes PT Simpson F Sweetman EA Davies AR. Early enteral nutrition, provided within 24 h of injury or intensive care unit admission, significantly reduces mortality in critically ill patients: a meta‐analysis of randomised controlled trials. Intensive Care Med. 2009; 35 ( 12 ): 2018 – 2027.
dc.identifier.citedreferenceDoig GS Chevrou‐Severac H Simpson F. Early enteral nutrition in critical illness: a full economic analysis using US costs. Clinicoecon Outcomes Res. 2013; 5: 429 – 436.
dc.identifier.citedreferenceMcClave SA Martindale RG Vanek VW et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2009; 33 ( 3 ): 277 – 316.
dc.identifier.citedreferencePfuntner A Wier LM Stocks C. Most frequent procedures performed in U.S. hospitals, 2010: Statistical Brief #149. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville, MD: Agency for Healthcare Research & Quality; 2006.
dc.identifier.citedreferenceDoig GS Simpson F Sweetman EA et al. Early parenteral nutrition in critically ill patients with short‐term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013; 309 ( 20 ): 2130 – 2138.
dc.identifier.citedreferenceDoig GS Simpson F Early PN Trial Investigators Group. Early parenteral nutrition in critically ill patients with short‐term relative contraindications to early enteral nutrition: a full economic analysis of a multicenter randomized controlled trial based on US costs. Clinicoecon Outcomes Res. 2013; 5: 369 – 379.
dc.identifier.citedreferenceHarvey SE Parrott F Harrison DA et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014; 371 ( 18 ): 1673 – 1684.
dc.identifier.citedreferencePerioperative total parenteral nutrition in surgical patients. The Veterans Affairs Total Parenteral Nutrition Cooperative Study Group. N Engl J Med. 1991; 325 ( 8 ): 525 – 532.
dc.identifier.citedreferenceHeneghan AF Pierre JF Tandee K et al. Parenteral nutrition decreases Paneth cell function and intestinal bactericidal activity while increasing susceptibility to bacterial enteroinvasion. JPEN J Parenter Enteral Nutr. 2014; 38 ( 7 ): 817 – 824.
dc.identifier.citedreferenceBuzby GP. Overview of randomized clinical trials of total parenteral nutrition for malnourished surgical patients. World J Surg. 1993; 17 ( 2 ): 173 – 177.
dc.identifier.citedreferencePeyret B Collardeau S Touzet S et al. Prevalence of liver complications in children receiving long‐term parenteral nutrition. Eur J Clin Nutr. 2011; 65 ( 6 ): 743 – 749.
dc.identifier.citedreferenceSquires RH Duggan C Teitelbaum DH et al. Natural history of pediatric intestinal failure: initial report from the Pediatric Intestinal Failure Consortium. J Pediatr. 2012; 161 ( 4 ): 723 – 728, e722.
dc.identifier.citedreferenceDemehri FR Stephens L Herrman E et al. Enteral autonomy in pediatric short bowel syndrome: predictive factors one year after diagnosis. J Pediatr Surg. 2015; 50 ( 1 ): 131 – 135.
dc.identifier.citedreferenceBackhed F Ley RE Sonnenburg JL Peterson DA Gordon JI. Host‐bacterial mutualism in the human intestine. Science. 2005; 307 ( 5717 ): 1915 – 1920.
dc.identifier.citedreferenceKoeth RA Wang Z Levison BS et al. Intestinal microbiota metabolism of L‐carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013; 19 ( 5 ): 576 – 585.
dc.identifier.citedreferenceRalls MW Miyasaka E Teitelbaum DH. Intestinal microbial diversity and perioperative complications. JPEN J Parenter Enteral Nutr. 2014; 38 ( 3 ): 392 – 399.
dc.identifier.citedreferenceFeng Y Ralls MW Xiao W Miyasaka E Herman RS Teitelbaum DH. Loss of enteral nutrition in a mouse model results in intestinal epithelial barrier dysfunction. Ann N Y Acad Sci. 2012; 1258: 71 – 77.
dc.identifier.citedreferenceDeitch EA. Gut‐origin sepsis: evolution of a concept. Surgeon. 2012; 10 ( 6 ): 350 – 356.
dc.identifier.citedreferenceAlverdy JC Aoys E Moss GS. Total parenteral nutrition promotes bacterial translocation from the gut. Surgery. 1988; 104 ( 2 ): 185 – 190.
dc.identifier.citedreferenceSakamoto K Mori Y Takagi H et al. Translocation of Salmonella typhimurium in rats on total parenteral nutrition correlates with changes in intestinal morphology and mucus gel. Nutrition. 2004; 20 ( 4 ): 372 – 376.
dc.identifier.citedreferenceNakasaki H Mitomi T Tajima T Ohnishi N Fujii K. Gut bacterial translocation during total parenteral nutrition in experimental rats and its countermeasure. Am J Surg. 1998; 175 ( 1 ): 38 – 43.
dc.identifier.citedreferenceDemehri FR Barrett M Ralls MW Miyasaka EA Feng Y Teitelbaum DH. Intestinal epithelial cell apoptosis and loss of barrier function in the setting of altered microbiota with enteral nutrient deprivation. Front Cell Infect Microbiol. 2013; 3: 105.
dc.identifier.citedreferenceRalls MW Demehri FR Feng Y Woods Ignatoski KM Teitelbaum DH. Enteral nutrient deprivation in patients leads to a loss of intestinal epithelial barrier function. Surgery. 2015; 157 ( 4 ): 732 – 742.
dc.identifier.citedreferenceCruz N Lu Q Alvarez X Deitch EA. Bacterial translocation is bacterial species dependent: results using the human Caco‐2 intestinal cell line. J Trauma. 1994; 36 ( 5 ): 612 – 616.
dc.identifier.citedreferenceDeitch EA. Bacterial translocation: the influence of dietary variables. Gut. 1994; 35 ( 1 suppl ): S23 – S27.
dc.identifier.citedreferenceYang H Kiristioglu I Fan Y et al. Interferon‐gamma expression by intraepithelial lymphocytes results in a loss of epithelial barrier function in a mouse model of total parenteral nutrition. Ann Surg. 2002; 236 ( 2 ): 226 – 234.
dc.identifier.citedreferenceBischoff SC Barbara G Buurman W et al. Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol. 2014; 14: 189.
dc.identifier.citedreferenceMarchiando AM Shen L Graham WV et al. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology. 2011; 140 ( 4 ): 1208 – 1218, e1201‐e1202.
dc.identifier.citedreferenceGroschwitz KR Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009; 124 ( 1 ): 3 – 20; quiz 21‐22.
dc.identifier.citedreferenceJohansson ME Ambort D Pelaseyed T et al. Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci. 2011; 68 ( 22 ): 3635 – 3641.
dc.identifier.citedreferenceSalzman NH. Paneth cell defensins and the regulation of the microbiome: detente at mucosal surfaces. Gut Microbes. 2010; 1 ( 6 ): 401 – 406.
dc.identifier.citedreferenceKing BK Li J Kudsk KA. A temporal study of TPN‐induced changes in gut‐associated lymphoid tissue and mucosal immunity. Arch Surg. 1997; 132 ( 12 ): 1303 – 1309.
dc.identifier.citedreferenceGanesh BP Klopfleisch R Loh G Blaut M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella typhimurium –infected gnotobiotic mice. PloS One. 2013; 8 ( 9 ): e74963.
dc.identifier.citedreferencePearson JP Brownlee IA. The interaction of large bowel microflora with the colonic mucus barrier. Int J Inflamm. 2010; 2010: 321426.
dc.identifier.citedreferenceNg KM Ferreyra JA Higginbottom SK et al. Microbiota‐liberated host sugars facilitate post‐antibiotic expansion of enteric pathogens. Nature. 2013; 502 ( 7469 ): 96 – 99.
dc.identifier.citedreferenceShroff KE Meslin K Cebra JJ. Commensal enteric bacteria engender a self‐limiting humoral mucosal immune response while permanently colonizing the gut. Infect Immun. 1995; 63 ( 10 ): 3904 – 3913.
dc.identifier.citedreferenceUlluwishewa D Anderson RC McNabb WC Moughan PJ Wells JM Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011; 141 ( 5 ): 769 – 776.
dc.identifier.citedreferenceEwaschuk JB Diaz H Meddings L et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol. 2008; 295 ( 5 ): G1025 – G1034.
dc.identifier.citedreferenceLeslie JL Huang S Opp JS et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun. 2015; 83 ( 1 ): 138 – 145.
dc.identifier.citedreferencePierre JF Heneghan AF Tsao FH et al. Route and type of nutrition and surgical stress influence secretory phospholipase A2 secretion of the murine small intestine. JPEN J Parenter Enteral Nutr. 2011; 35 ( 6 ): 748 – 756.
dc.identifier.citedreferenceOmata J Pierre JF Heneghan AF et al. Parenteral nutrition suppresses the bactericidal response of the small intestine. Surgery. 2013; 153 ( 1 ): 17 – 24.
dc.identifier.citedreferenceConour JE Ganessunker D Tappenden KA Donovan SM Gaskins HR. Acidomucin goblet cell expansion induced by parenteral nutrition in the small intestine of piglets. Am J Physiol Gastrointest Liver Physiol. 2002; 283 ( 5 ): G1185 – G1196.
dc.identifier.citedreferenceSun X Yang H Nose K et al. Decline in intestinal mucosal IL‐10 expression and decreased intestinal barrier function in a mouse model of total parenteral nutrition. Am J Physiol Gastrointest Liver Physiol. 2008; 294 ( 1 ): G139 – G147.
dc.identifier.citedreferenceFeng Y Teitelbaum DH. Tumour necrosis factor–induced loss of intestinal barrier function requires TNFR1 and TNFR2 signalling in a mouse model of total parenteral nutrition. J Physiol. 2013; 591 ( pt 15 ): 3709 – 3723.
dc.identifier.citedreferenceWildhaber BE Lynn KN Yang H Teitelbaum DH. Total parenteral nutrition‐induced apoptosis in mouse intestinal epithelium: regulation by the Bcl‐2 protein family. Pediatr Surg Int. 2002; 18 ( 7 ): 570 – 575.
dc.identifier.citedreferenceClayburgh DR Shen L Turner JR. A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest. 2004; 84 ( 3 ): 282 – 291.
dc.identifier.citedreferenceYang H Finaly R Teitelbaum DH. Alteration in epithelial permeability and ion transport in a mouse model of total parenteral nutrition. Crit Care Med. 2003; 31 ( 4 ): 1118 – 1125.
dc.identifier.citedreferenceWildhaber BE Yang H Spencer AU Drongowski RA Teitelbaum DH. Lack of enteral nutrition—effects on the intestinal immune system. J Surg Res. 2005; 123 ( 1 ): 8 – 16.
dc.identifier.citedreferenceMadara JL Stafford J. Interferon‐gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest. 1989; 83 ( 2 ): 724 – 727.
dc.identifier.citedreferenceYang H Fan Y Teitelbaum DH. Intraepithelial lymphocyte‐derived interferon‐gamma evokes enterocyte apoptosis with parenteral nutrition in mice. Am J Physiol Gastrointest Liver Physiol. 2003; 284 ( 4 ): G629 – G637.
dc.identifier.citedreferenceFeng Y Teitelbaum DH. Epidermal growth factor/TNF‐alpha transactivation modulates epithelial cell proliferation and apoptosis in a mouse model of parenteral nutrition. Am J Physiol Gastrointest Liver Physiol. 2012; 302 ( 2 ): G236 – G249.
dc.identifier.citedreferenceMiyasaka EA Feng Y Poroyko V et al. Total parenteral nutrition‐associated lamina propria inflammation in mice is mediated by a MyD88‐dependent mechanism. J Immunol. 2013; 190 ( 12 ): 6607 – 6615.
dc.identifier.citedreferenceBarnes PJ Karin M. Nuclear factor‐kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997; 336 ( 15 ): 1066 – 1071.
dc.identifier.citedreferenceMadsen KL Malfair D Gray D Doyle JS Jewell LD Fedorak RN. Interleukin‐10 gene‐deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm Bowel Dis. 1999; 5 ( 4 ): 262 – 270.
dc.identifier.citedreferenceBerg DJ Zhang J Weinstock JV et al. Rapid development of colitis in NSAID‐treated IL‐10‐deficient mice. Gastroenterology. 2002; 123 ( 5 ): 1527 – 1542.
dc.identifier.citedreferenceFreeman JJ Feng Y Demehri FR Dempsey PJ Teitelbaum DH. TPN‐associated intestinal epithelial cell atrophy is modulated by TLR4/EGF signaling pathways. FASEB J. 2015; 29 ( 7 ): 2943 – 2958.
dc.identifier.citedreferenceMcElroy SJ Frey MR Yan F et al. Tumor necrosis factor inhibits ligand‐stimulated EGF receptor activation through a TNF receptor 1‐dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2008; 295 ( 2 ): G285 – G293.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.