Show simple item record

Functional traits in cover crop mixtures: Biological nitrogen fixation and multifunctionality

dc.contributor.authorBlesh, Jennifer
dc.date.accessioned2018-02-05T16:47:07Z
dc.date.available2019-03-01T21:00:18Zen
dc.date.issued2018-01
dc.identifier.citationBlesh, Jennifer (2018). "Functional traits in cover crop mixtures: Biological nitrogen fixation and multifunctionality." Journal of Applied Ecology 55(1): 38-48.
dc.identifier.issn0021-8901
dc.identifier.issn1365-2664
dc.identifier.urihttps://hdl.handle.net/2027.42/142146
dc.description.abstractCover crop mixtures with complementary plant functional traits including biological nitrogen fixation (BNF) may supply nitrogen (N) to farm fields while simultaneously providing other ecosystem functions such as N retention and weed suppression (i.e., multifunctionality). Understanding variation in these relationships across farms can help advance trait‐based research in agroecology and ecological approaches to nutrient management.This on‐farm experiment explored the contributions of two‐ and three‐species cover crop mixtures, which combined legumes, brassicas and cool season grasses, to ecosystem functions across a gradient of soil fertility levels driven by farm management history.I evaluated the predictions that functional trait diversity of the cover crops would explain variation in multifunctionality, and that legume biomass and BNF within mixtures would be inversely correlated with indicators of soil N availability from organic matter across the farm gradient.Ecosystem functions varied widely across farms. As expected, functional diversity was a significant predictor of multifunctionality, although the relationship was weak. Cover crop mixtures had significantly greater multifunctionality than a cereal rye monoculture, though not at the highest observed levels of each function, indicating trade‐offs among functions. Linear regression models showed that legume biomass and BNF were negatively correlated with soil properties indicative of N availability from soil organic matter, whereas non‐legume and weed biomass were positively correlated with other measures of soil fertility.Synthesis and applications. Cover crop mixtures can increase functional diversity within crop rotations. Designing mixtures with complementary plant traits may be particularly effective for increasing multifunctionality and agroecosystem sustainability. On‐farm research to understand variation in biological nitrogen fixation, which is both a plant trait and a key ecosystem function, across heterogeneous soil conditions, can inform management of soil fertility based on ecological principles.Cover crop mixtures can increase functional diversity within crop rotations. Designing mixtures with complementary plant traits may be particularly effective for increasing multifunctionality and agroecosystem sustainability. On‐farm research to understand variation in biological nitrogen fixation, which is both a plant trait and a key ecosystem function, across heterogeneous soil conditions, can inform management of soil fertility based on ecological principles.
dc.publisherSoil Science Society of America
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfunctional trait
dc.subject.othermultifunctionality
dc.subject.otherplant traits
dc.subject.othersoil fertility
dc.subject.otheron‐farm research
dc.subject.otheragroecology
dc.subject.otherbiological nitrogen fixation
dc.subject.othercover crops
dc.subject.otherecological nutrient management
dc.subject.otherfunctional diversity
dc.titleFunctional traits in cover crop mixtures: Biological nitrogen fixation and multifunctionality
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142146/1/jpe13011_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142146/2/jpe13011.pdf
dc.identifier.doi10.1111/1365-2664.13011
dc.identifier.sourceJournal of Applied Ecology
dc.identifier.citedreferenceSmith, R. G., Atwood, L. W., & Warren, N. D. ( 2014 ). Increased productivity of a cover crop mixture is not associated with enhanced agroecosystem services. PLoS ONE, 9, e97351.
dc.identifier.citedreferenceJensen, E. S. ( 1996 ). Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea‐barley intercrops. Plant and Soil, 182, 25 – 38.
dc.identifier.citedreferenceKiers, E. T., Rousseau, R. A., West, S. A., & Denison, R. F. ( 2003 ). Host sanctions and the legume–rhizobium mutualism. Nature, 425, 78 – 81.
dc.identifier.citedreferenceMarriott, E. E., & Wander, M. M. ( 2006 ). Total and labile soil organic matter in organic and conventional farming systems. Soil Science Society of America Journal, 70, 950 – 959.
dc.identifier.citedreferenceMartin, A. R., & Isaac, M. E. ( 2015 ). Plant functional traits in agroecosystems: A blueprint for research. Journal of Applied Ecology, 52, 1425 – 1435.
dc.identifier.citedreferencePetchey, O. L., & Gaston, K. J. ( 2006 ). Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741 – 758.
dc.identifier.citedreferenceRanells, N. N., & Wagger, M. G. ( 1997 ). Grass‐legume bicultures as winter annual cover crops. Agronomy Journal, 89, 659 – 665.
dc.identifier.citedreferenceRao, C. R. ( 1982 ). Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21, 24 – 43.
dc.identifier.citedreferenceSchipanski, M. E., Barbercheck, M., Douglas, M. R., Finney, D. M., Haider, K., Kaye, J. P., … Tooker, J. ( 2014 ). A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agricultural Systems, 125, 12 – 22.
dc.identifier.citedreferenceSchipanski, M. E., & Drinkwater, L. E. ( 2011 ). Nitrogen fixation of red clover interseeded with winter cereals across a management‐induced fertility gradient. Nutrient Cycling in Agroecosystems, 90, 105 – 119.
dc.identifier.citedreferenceSchleuter, D., Daufresne, M., Massol, F., & Argillier, C. ( 2010 ). A user’s guide to functional diversity indices. Ecological Monographs, 80, 469 – 484.
dc.identifier.citedreferenceShearer, G., & Kohl, D. H. ( 1986 ). N2‐fixation in field settings: Estimations based on natural 15N abundance. Australian Journal of Plant Physiology, 13, 699 – 756.
dc.identifier.citedreferenceShennan, C. ( 2008 ). Biotic interactions, ecological knowledge and agriculture. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 363, 717 – 739.
dc.identifier.citedreferenceSnapp, S. S., Swinton, S. M., Labarta, R., Mutch, D., Black, J. R., Leep, R., … O’Neil, K. ( 2005 ). Evaluating cover crops for benefits, costs and performance within cropping system niches. Agronomy Journal, 97, 322 – 332.
dc.identifier.citedreferenceStorkey, J., Döring, T., Baddeley, J., Collins, R., Roderick, S., Jones, H., & Watson, C. ( 2015 ). Engineering a plant community to deliver multiple ecosystem services. Ecological Applications, 25, 1034 – 1043.
dc.identifier.citedreferenceTiemann, L., Grandy, A., Atkinson, E., Marin‐Spiotta, E., & McDaniel, M. ( 2015 ). Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters, 18, 761 – 771.
dc.identifier.citedreferenceTonitto, C., David, M. B., & Drinkwater, L. E. ( 2006 ). Replacing bare fallows with cover crops in fertilizer‐intensive cropping systems: A meta‐analysis of crop yield and N dynamics. Agriculture, Ecosystems and Environment, 112, 58 – 72.
dc.identifier.citedreferenceUnkovich, M., Baldock, J., & Peoples, M. ( 2010 ). Prospects and problems of simple linear models for estimating symbiotic N2 fixation by crop and pasture legumes. Plant and Soil, 329, 75 – 89.
dc.identifier.citedreferenceWander, M. ( 2004 ). Soil organic matter fractions and their relevance to soil function. In F. Magdoff & R.R. Weil (Eds.), Soil organic matter in sustainable agriculture (pp. 67 – 102 ). Boca Raton, FL: CRC Press.
dc.identifier.citedreferenceWander, M., Traina, S., Stinner, B., & Peters, S. ( 1994 ). Organic and conventional management effects on biologically active soil organic matter pools. Soil Science Society of America Journal, 58, 1130 – 1139.
dc.identifier.citedreferenceWhite, C. M., DuPont, S. T., Hautau, M., Hartman, D., Finney, D. M., Bradley, B., … Kaye, J. P. ( 2017 ). Managing the trade off between nitrogen supply and retention with cover crop mixtures. Agriculture, Ecosystems & Environment, 237, 121 – 133.
dc.identifier.citedreferenceWood, S. A., Karp, D. S., DeClerck, F., Kremen, C., Naeem, S., & Palm, C. A. ( 2015 ). Functional traits in agriculture: Agrobiodiversity and ecosystem services. Trends in Ecology & Evolution, 30, 531 – 539.
dc.identifier.citedreferenceWortman, S. E., Francis, C., & Lindquist, J. L. ( 2012 ). Cover crop mixtures for the western Corn Belt: Opportunities for increased productivity and stability. Agronomy Journal, 104, 699 – 705.
dc.identifier.citedreferenceZavaleta, E. S., Pasari, J. R., Hulvey, K. B., & Tilman, G. D. ( 2010 ). Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 107, 1443 – 1446.
dc.identifier.citedreferenceZhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., & Shen, Y. ( 2015 ). Managing nitrogen for sustainable development. Nature, 528, 51 – 59.
dc.identifier.citedreferenceMori, A. S., Isbell, F., Fujii, S., Makoto, K., Matsuoka, S., & Osono, T. ( 2016 ). Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecology Letters, 19, 249 – 259.
dc.identifier.citedreferenceMunroe, J. W., & Isaac, M. E. ( 2014 ). N2‐fixing trees and the transfer of fixed‐N for sustainable agroforestry: A review. Agronomy for Sustainable Development, 34, 417 – 427.
dc.identifier.citedreferenceBlesh, J. ( 2017 ). Data from: Functional traits in cover crop mixtures: Biological nitrogen fixation and multifunctionality. University of Michigan Deep Blue Data, https://deepblue.lib.umich.edu/data/. https://doi.org/10.7302/z2wm1bk6
dc.identifier.citedreferenceBlesh, J., & Drinkwater, L. ( 2013 ). The impact of nitrogen source and crop rotation on nitrogen mass balances in the Mississippi River Basin. Ecological Applications, 23, 1017 – 1035.
dc.identifier.citedreferenceBrooker, R. W., Bennett, A. E., Cong, W. F., Daniell, T. J., George, T. S., Hallett, P. D., … Karley, A. J. ( 2015 ). Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 206, 107 – 117.
dc.identifier.citedreferenceByrnes, J. E., Gamfeldt, L., Isbell, F., Lefcheck, J. S., Griffin, J. N., Hector, A., … Emmett Duffy, J. ( 2014 ). Investigating the relationship between biodiversity and ecosystem multifunctionality: Challenges and solutions. Methods in Ecology and Evolution, 5, 111 – 124.
dc.identifier.citedreferenceCasanoves, F., Pla, L., Di Rienzo, J. A., & Dıaz, S. ( 2011 ). FDiversity: A software package for the integrated analysis of functional diversity. Methods in Ecology and Evolution, 2, 233 – 237.
dc.identifier.citedreferenceCrews, T. E., Blesh, J., Culman, S. W., Hayes, R. C., Jensen, E. S., Mack, M. C., … Schipanski, M. E. ( 2016 ) Going where no grains have gone before: From early to mid‐succession. Agriculture, Ecosystems & Environment, 223, 223 – 238.
dc.identifier.citedreferenceCTIC, SARE & ASTA ( 2016 ). 2015‐2016 Annual Report: Cover Crop Survey. North Central Sustainable Agriculture Research and Education Program and Conservation Technology Innovation Center.
dc.identifier.citedreferenceDrinkwater, L. E., Cambardella, C. A., Reeder, J. D., & Rice, C. W. ( 1996 ). Potentially mineralizable nitrogen as an indicator of biologically active soil nitrogen. In M. A. Arshad, B. Lowery, B. Grossman, J. Doran, & A. Jones (Eds.), Methods for assessing soil quality (pp. 217 – 229 ), SSSA Special Publication vol 49. Madison, WI: Soil Science Society of America.
dc.identifier.citedreferenceDrinkwater, L. E., Wagoner, P., & Sarrantonio, M. ( 1998 ). Legume‐based cropping systems have reduced carbon and nitrogen losses. Nature, 396, 262 – 265.
dc.identifier.citedreferenceFinney, D. M., & Kaye, J. P. ( 2017 ). Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. Journal of Applied Ecology, 54, 509 – 517.
dc.identifier.citedreferenceFinney, D. M., White, C. M., & Kaye, J. P. ( 2016 ). Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agronomy Journal, 108, 39 – 52.
dc.identifier.citedreferenceGarnier, E., & Navas, M.‐L. ( 2012 ). A trait‐based approach to comparative functional plant ecology: Concepts, methods and applications for agroecology. A review. Agronomy for Sustainable Development, 32, 365 – 399.
dc.identifier.citedreferenceGregorich, E., Drury, C., & Baldock, J. A. ( 2001 ). Changes in soil carbon under long‐term maize in monoculture and legume‐based rotation. Canadian Journal of Soil Science, 81, 21 – 31.
dc.identifier.citedreferenceGrime, J. ( 1998 ). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86, 902 – 910.
dc.identifier.citedreferenceHøgh‐Jensen, H., & Schjoerring, J. K. ( 2001 ). Rhizodeposition of nitrogen by red clover, white clover and ryegrass leys. Soil Biology and Biochemistry, 33, 439 – 448.
dc.identifier.citedreferenceJackson, L. E., Pascual, U., & Hodgkin, T. ( 2007 ). Utilizing and conserving agrobiodiversity in agricultural landscapes. Agriculture, Ecosystems & Environment, 121, 196 – 210.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.