Show simple item record

The Use of Cone‐Beam Computed Tomography in Management of Patients Requiring Dental Implants: An American Academy of Periodontology Best Evidence Review

dc.contributor.authorRios, Hector F.
dc.contributor.authorBorgnakke, Wenche S.
dc.contributor.authorBenavides, Erika
dc.date.accessioned2018-02-05T16:47:26Z
dc.date.available2018-12-03T15:34:04Zen
dc.date.issued2017-10
dc.identifier.citationRios, Hector F.; Borgnakke, Wenche S.; Benavides, Erika (2017). "The Use of Cone‐Beam Computed Tomography in Management of Patients Requiring Dental Implants: An American Academy of Periodontology Best Evidence Review." Journal of Periodontology 88(10): 946-959.
dc.identifier.issn0022-3492
dc.identifier.issn1943-3670
dc.identifier.urihttps://hdl.handle.net/2027.42/142165
dc.publisherAmerican Academy of Periodontology
dc.publisherWiley Periodicals, Inc.
dc.subject.othersinus floor augmentation
dc.subject.otherCone‐beam computed tomography
dc.subject.othersurgery, computer‐assisted
dc.subject.otherdental implants
dc.subject.otherdiagnostic imaging
dc.subject.otheroral surgical procedures
dc.titleThe Use of Cone‐Beam Computed Tomography in Management of Patients Requiring Dental Implants: An American Academy of Periodontology Best Evidence Review
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI.
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142165/1/jper0946.pdf
dc.identifier.doi10.1902/jop.2017.160548
dc.identifier.sourceJournal of Periodontology
dc.identifier.citedreferenceLana JP, Carneiro PM, Machado VdeC, de Souza PE, Manzi FR, Horta MC. Anatomic variations and lesions of the maxillary sinus detected in cone beam computed tomography for dental implants. Clin Oral Implants Res 2012; 23: 1398 – 1403.
dc.identifier.citedreferenceHasan I, Dominiak M, Blaszczyszyn A, Bourauel C, Gedrange T, Heinemann F. Radiographic evaluation of bone density around immediately loaded implants. Ann Anat 2015; 199: 52 – 57.
dc.identifier.citedreferenceIsoda K, Ayukawa Y, Tsukiyama Y, Sogo M, Matsushita Y, Koyano K. Relationship between the bone density estimated by cone‐beam computed tomography and the primary stability of dental implants. Clin Oral Implants Res 2012; 23: 832 – 836.
dc.identifier.citedreferenceLee S, Gantes B, Riggs M, Crigger M. Bone density assessments of dental implant sites: 3. Bone quality evaluation during osteotomy and implant placement. Int J Oral Maxillofac Implants 2007; 22: 208 – 212.
dc.identifier.citedreferenceMarquezan M, Lau TC, Mattos CT, et al. Bone mineral density. Angle Orthod 2012; 82: 62 – 66.
dc.identifier.citedreferenceMonje A, Monje F, González‐García R, Galindo‐Moreno P, Rodriguez‐Salvanes F, Wang HL. Comparison between microcomputed tomography and cone‐beam computed tomography radiologic bone to assess atrophic posterior maxilla density and microarchitecture. Clin Oral Implants Res 2014; 25: 723 – 728.
dc.identifier.citedreferenceNaitoh M, Hirukawa A, Katsumata A, Ariji E. Prospective study to estimate mandibular cancellous bone density using large‐volume cone‐beam computed tomography. Clin Oral Implants Res 2010; 21: 1309 – 1313.
dc.identifier.citedreferenceNomura Y, Watanabe H, Honda E, Kurabayashi T. Reliability of voxel values from cone‐beam computed tomography for dental use in evaluating bone mineral density. Clin Oral Implants Res 2010; 21: 558 – 562.
dc.identifier.citedreferenceNomura Y, Watanabe H, Shirotsu K, Honda E, Sumi Y, Kurabayshi T. Stability of voxel values from cone‐beam computed tomography for dental use in evaluating bone mineral content. Clin Oral Implants Res 2013; 24: 543 – 548.
dc.identifier.citedreferenceParsa A, Ibrahim N, Hassan B, Motroni A, van der Stelt P, Wismeijer D. Reliability of voxel gray values in cone beam computed tomography for preoperative implant planning assessment. Int J Oral Maxillofac Implants 2012; 27: 1438 – 1442.
dc.identifier.citedreferenceParsa A, Ibrahim N, Hassan B, van der Stelt P, Wismeijer D. Bone quality evaluation at dental implant site using multislice CT, micro‐CT, and cone beam CT. Clin Oral Implants Res 2015; 26: e1 – e7.
dc.identifier.citedreferencePauwels R, Jacobs R, Singer SR, Mupparapu M. CBCT‐based bone quality assessment: Are Hounsfield units applicable? Dentomaxillofac Radiol 2015; 44: 20140238.
dc.identifier.citedreferenceSalimov F, Tatli U, Kürkçü M, Akoğlan M, Oztunç H, Kurtoğlu C. Evaluation of relationship between preoperative bone density values derived from cone beam computed tomography and implant stability parameters: A clinical study. Clin Oral Implants Res 2014; 25: 1016 – 1021.
dc.identifier.citedreferenceSilva IM, Freitas DQ, Ambrosano GM, Bóscolo FN, Almeida SM. Bone density: Comparative evaluation of Hounsfield units in multislice and cone‐beam computed tomography. Braz Oral Res 2012; 26: 550 – 556.
dc.identifier.citedreferenceSong YD, Jun SH, Kwon JJ. Correlation between bone quality evaluated by cone‐beam computerized tomography and implant primary stability. Int J Oral Maxillofac Implants 2009; 24: 59 – 64.
dc.identifier.citedreferenceTatli U, Salimov F, Kürkcü M, Akoğlan M, Kurtoğlu C. Does cone beam computed tomography‐derived bone density give predictable data about stability changes of immediately loaded implants?: A 1‐year resonance frequency follow‐up study. J Craniofac Surg 2014; 25: e293 – e299.
dc.identifier.citedreferenceValiyaparambil JV, Yamany I, Ortiz D, et al. Bone quality evaluation: Comparison of cone beam computed tomography and subjective surgical assessment. Int J Oral Maxillofac Implants 2012; 27: 1271 – 1277.
dc.identifier.citedreferenceKim DG. Can dental cone beam computed tomography assess bone mineral density? J Bone Metab 2014; 21: 117 – 126.
dc.identifier.citedreferenceHua Y, Nackaerts O, Duyck J, Maes F, Jacobs R. Bone quality assessment based on cone beam computed tomography imaging. Clin Oral Implants Res 2009; 20: 767 – 771.
dc.identifier.citedreferenceMah P, Reeves TE, McDavid WD. Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofac Radiol 2010; 39: 323 – 335.
dc.identifier.citedreferenceCorpas Ldos S, Jacobs R, Quirynen M, Huang Y, Naert I, Duyck J. Peri‐implant bone tissue assessment by comparing the outcome of intra‐oral radiograph and cone beam computed tomography analyses to the histological standard. Clin Oral Implants Res 2011; 22: 492 – 499.
dc.identifier.citedreferenceParsa A, Ibrahim N, Hassan B, Motroni A, van der Stelt P, Wismeijer D. Influence of cone beam CT scanning parameters on grey value measurements at an implant site. Dentomaxillofac Radiol 2013; 42: 79884780.
dc.identifier.citedreferenceSur J, Seki K, Koizumi H, Nakajima K, Okano T. Effects of tube current on cone‐beam computerized tomography image quality for presurgical implant planning in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110: e29 – e33.
dc.identifier.citedreferenceCarter L, Farman AG, Geist J, et al; American Academy of Oral and Maxillofacial Radiology. American Academy of Oral and Maxillofacial Radiology executive opinion statement on performing and interpreting diagnostic cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 561 – 562.
dc.identifier.citedreferenceBornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: A systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants 2014; 29 (Suppl.): 55 – 77.
dc.identifier.citedreferenceBuser D, Sennerby L, De Bruyn H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontol 2000 2017; 73: 7 – 21.
dc.identifier.citedreferenceBornstein MM, Horner K, Jacobs R. Use of cone beam computed tomography in implant dentistry: Current concepts, indications and limitations for clinical practice and research. Periodontol 2000 2017; 73: 51 – 72.
dc.identifier.citedreferenceTyndall DA, Price JB, Tetradis S, Ganz SD, Hildebolt C, Scarfe WC; American Academy of Oral and Maxillofacial Radiology. Position statement of the American Academy of Oral and Maxillofacial Radiology on selection criteria for the use of radiology in dental implantology with emphasis on cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113: 817 – 826.
dc.identifier.citedreferencePR Newswire Association LLC. Global Cone Beam Computed Tomography (CBCT) Market Expected to Reach US$ 960.8 Mn in 2023: Transparency Market Research. Available at: http://www.prnewswire.com/news‐releases/global‐cone‐beam‐computed‐tomography‐cbct‐market‐expected‐to‐reach‐us‐9608‐mn‐in‐2023‐transparency‐market‐research‐577091241.html. Accessed July 19, 2017.
dc.identifier.citedreferenceThomas SL. Application of cone‐beam CT in the office setting. Dent Clin North Am 2008; 52: 753 – 759, vi.
dc.identifier.citedreferenceNemtoi A, Czink C, Haba D, Gahleitner A. Cone beam CT: A current overview of devices. Dentomaxillofac Radiol 2013; 42: 20120443.
dc.identifier.citedreferenceGuerrero ME, Noriega J, Jacobs R. Preoperative implant planning considering alveolar bone grafting needs and complication prediction using panoramic versus CBCT images. Imaging Sci Dent 2014; 44: 213 – 220.
dc.identifier.citedreferenceLudlow JB, Timothy R, Walker C, et al. Effective dose of dental CBCT—A meta analysis of published data and additional data for nine CBCT units. Dentomaxillofac Radiol 2015; 44: 20140197.
dc.identifier.citedreferenceLudlow JB, Davies‐Ludlow LE, Brooks SL. Dosimetry of two extraoral direct digital imaging devices: NewTom cone beam CT and Orthophos Plus DS panoramic unit. Dentomaxillofac Radiol 2003; 32: 229 – 234.
dc.identifier.citedreferenceTsiklakis K, Donta C, Gavala S, Karayianni K, Kamenopoulou V, Hourdakis CJ. Dose reduction in maxillofacial imaging using low dose cone beam CT. Eur J Radiol 2005; 56: 413 – 417.
dc.identifier.citedreferenceLudlow JB, Davies‐Ludlow LE, Brooks SL, Howerton WB. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i‐CAT. Dentomaxillofac Radiol 2006; 35: 219 – 226.
dc.identifier.citedreferenceThe 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 2007; 37: 1 332.
dc.identifier.citedreferenceHirsch E, Wolf U, Heinicke F, Silva MA. Dosimetry of the cone beam computed tomography Veraviewepocs 3D compared with the 3D Accuitomo in different fields of view. Dentomaxillofac Radiol 2008; 37: 268 – 273.
dc.identifier.citedreferenceLofthag‐Hansen S, Thilander‐Klang A, Ekestubbe A, Helmrot E, Gröndahl K. Calculating effective dose on a cone beam computed tomography device: 3D Accuitomo and 3D Accuitomo FPD. Dentomaxillofac Radiol 2008; 37: 72 – 79.
dc.identifier.citedreferenceLudlow JB, Ivanovic M. Comparative dosimetry of dental CBCT devices and 64‐slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 106 – 114.
dc.identifier.citedreferenceSilva MA, Wolf U, Heinicke F, Bumann A, Visser H, Hirsch E. Cone‐beam computed tomography for routine orthodontic treatment planning: A radiation dose evaluation. Am J Orthod Dentofacial Orthop 2008; 133: 640.e1 – 640.e5.
dc.identifier.citedreferenceChau AC, Fung K. Comparison of radiation dose for implant imaging using conventional spiral tomography, computed tomography, and cone‐beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 559 – 565.
dc.identifier.citedreferenceFaccioli N, Barillari M, Guariglia S, et al. Radiation dose saving through the use of cone‐beam CT in hearing‐impaired patients. Radiol Med (Torino) 2009; 114: 1308 – 1318.
dc.identifier.citedreferenceLoubele M, Bogaerts R, Van Dijck E, et al. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol 2009; 71: 461 – 468.
dc.identifier.citedreferenceOkano T, Harata Y, Sugihara Y, et al. Absorbed and effective doses from cone beam volumetric imaging for implant planning. Dentomaxillofac Radiol 2009; 38: 79 – 85.
dc.identifier.citedreferenceSeet KY, Barghi A, Yartsev S, Van Dyk J. The effects of field‐of‐view and patient size on CT numbers from cone‐beam computed tomography. Phys Med Biol 2009; 54: 6251 – 6262.
dc.identifier.citedreferencePauwels R, Beinsberger J, Collaert B, et al; SEDENTEXCT Project Consortium. Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol 2012; 81: 267 – 271.
dc.identifier.citedreferenceQu XM, Li G, Ludlow JB, Zhang ZY, Ma XC. Effective radiation dose of ProMax 3D cone‐beam computerized tomography scanner with different dental protocols. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110: 770 – 776.
dc.identifier.citedreferenceLudlow JB. A manufacturer’s role in reducing the dose of cone beam computed tomography examinations: effect of beam filtration. Dentomaxillofac Radiol 2011; 40: 115 – 122.
dc.identifier.citedreferenceJaju PP, Jaju SP. Cone‐beam computed tomography: Time to move from ALARA to ALADA. Imaging Sci Dent 2015; 45: 263 – 265.
dc.identifier.citedreferenceTyndall DA, Brooks SL. Selection criteria for dental implant site imaging: A position paper of the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000; 89: 630 – 637.
dc.identifier.citedreferenceHorner K, Islam M, Flygare L, Tsiklakis K, Whaites E. Basic principles for use of dental cone beam computed tomography: Consensus guidelines of the European Academy of Dental and Maxillofacial Radiology. Dentomaxillofac Radiol 2009; 38: 187 – 195.
dc.identifier.citedreferenceBenavides E, Rios HF, Ganz SD, et al. Use of cone beam computed tomography in implant dentistry: The International Congress of Oral Implantologists consensus report. Implant Dent 2012; 21: 78 – 86.
dc.identifier.citedreferenceCristache CM, Gurbanescu S. Accuracy evaluation of a stereolithographic surgical template for dental implant insertion using 3D superimposition protocol. Int J Dent 2017; 2017: 4292081.
dc.identifier.citedreferencePrice JB, Thaw KL, Tyndall DA, Ludlow JB, Padilla RJ. Incidental findings from cone beam computed tomography of the maxillofacial region: A descriptive retrospective study. Clin Oral Implants Res 2012; 23: 1261 – 1268.
dc.identifier.citedreferenceMandian M, Tadinada A. Incidental findings in the neck region of dental implant patients: A comparison between panoramic radiography and CBCT. J Mass Dent Soc 2014; 63: 42 – 45.
dc.identifier.citedreferenceBarghan S, Tetradis S, Nervina JM. Skeletal and soft‐tissue incidental findings on cone‐beam computed tomography images. Am J Orthod Dentofacial Orthop 2013; 143: 888 – 892.
dc.identifier.citedreferencePette GA, Norkin FJ, Ganeles J, et al. Incidental findings from a retrospective study of 318 cone beam computed tomography consultation reports. Int J Oral Maxillofac Implants 2012; 27: 595 – 603.
dc.identifier.citedreferenceKaeppler G, Mast M. Indications for cone‐beam computed tomography in the area of oral and maxillofacial surgery. Int J Comput Dent 2012; 15: 271 – 286.
dc.identifier.citedreferenceAllareddy V, Vincent SD, Hellstein JW, Qian F, Smoker WR, Ruprecht A. Incidental findings on cone beam computed tomography images. Int J Dent 2012; 2012: 871532.
dc.identifier.citedreferenceDegidi M, Nardi D, Daprile G, Piattelli A. Buccal bone plate in the immediately placed and restored maxillary single implant: A 7‐year retrospective study using computed tomography. Implant Dent 2012; 21: 62 – 66.
dc.identifier.citedreferenceFienitz T, Schwarz F, Ritter L, Dreiseidler T, Becker J, Rothamel D. Accuracy of cone beam computed tomography in assessing peri‐implant bone defect regeneration: A histologically controlled study in dogs. Clin Oral Implants Res 2012; 23: 882 – 887.
dc.identifier.citedreferenceGolubovic V, Mihatovic I, Becker J, Schwarz F. Accuracy of cone‐beam computed tomography to assess the configuration and extent of ligature‐induced peri‐implantitis defects. A pilot study. Oral Maxillofac Surg 2012; 16: 349 – 354.
dc.identifier.citedreferencePinheiro LR, Scarfe WC, Augusto de Oliveira Sales M, Gaia BF, Cortes AR, Cavalcanti MG. Effect of cone‐beam computed tomography field of view and acquisition frame on the detection of chemically simulated peri‐implant bone loss in vitro. J Periodontol 2015; 86: 1159 – 1165.
dc.identifier.citedreferenceKühl S, Zürcher S, Zitzmann NU, Filippi A, Payer M, Dagassan‐Berndt D. Detection of peri‐implant bone defects with different radiographic techniques—A human cadaver study. Clin Oral Implants Res 2016; 27: 529 – 534.
dc.identifier.citedreferenceYepes JF, Al‐Sabbagh M. Use of cone‐beam computed tomography in early detection of implant failure. Dent Clin North Am 2015; 59: 41 – 56.
dc.identifier.citedreferenceNagarajappa AK, Dwivedi N, Tiwari R. Artifacts: The downturn of CBCT image. J Int Soc Prev Community Dent 2015; 5: 440 – 445.
dc.identifier.citedreferenceSchulze RK, Berndt D, d’Hoedt B. On cone‐beam computed tomography artifacts induced by titanium implants. Clin Oral Implants Res 2010; 21: 100 – 107.
dc.identifier.citedreferenceNaitoh M, Nabeshima H, Hayashi H, Nakayama T, Kurita K, Ariji E. Postoperative assessment of incisor dental implants using cone‐beam computed tomography. J Oral Implantol 2010; 36: 377 – 384.
dc.identifier.citedreferenceShiratori LN, Marotti J, Yamanouchi J, Chilvarquer I, Contin I, Tortamano‐Neto P. Measurement of buccal bone volume of dental implants by means of cone‐beam computed tomography. Clin Oral Implants Res 2012; 23: 797 – 804.
dc.identifier.citedreferenceAltunbas C, Kavanagh B, Alexeev T, Miften M. Transmission characteristics of a two dimensional antiscatter grid prototype for CBCT. Med Phys 2017; 44: 3952 – 3964.
dc.identifier.citedreferenceVera C, De Kok IJ, Chen W, Reside G, Tyndall D, Cooper LF. Evaluation of post‐implant buccal bone resorption using cone beam computed tomography: A clinical pilot study. Int J Oral Maxillofac Implants 2012; 27: 1249 – 1257.
dc.identifier.citedreferenceChappuis V, Engel O, Reyes M, Shahim K, Nolte LP, Buser D. Ridge alterations post‐extraction in the esthetic zone: A 3D analysis with CBCT. J Dent Res 2013; 92 ( Suppl. 12 ): 195S – 201S.
dc.identifier.citedreferenceOmran M, Min S, Abdelhamid A, Liu Y, Zadeh HH. Alveolar ridge dimensional changes following ridge preservation procedure: Part 2 — CBCT 3D analysis in non‐human primate model. Clin Oral Implants Res 2016; 27: 859 – 866.
dc.identifier.citedreferenceUmanjec‐Korac S, Wu G, Hassan B, Liu Y, Wismeijer D. A retrospective analysis of the resorption rate of deproteinized bovine bone as maxillary sinus graft material on cone beam computed tomography. Clin Oral Implants Res 2014; 25: 781 – 785.
dc.identifier.citedreferenceCoomes AM, Mealey BL, Huynh‐Ba G, Barboza‐Arguello C, Moore WS, Cochran DL. Buccal bone formation after flapless extraction: A randomized, controlled clinical trial comparing recombinant human bone morphogenetic protein 2/absorbable collagen carrier and collagen sponge alone. J Periodontol 2014; 85: 525 – 535.
dc.identifier.citedreferenceMazzocco F, Jimenez D, Barallat L, Paniz G, Del Fabbro M, Nart J. Bone volume changes after immediate implant placement with or without flap elevation. Clin Oral Implants Res 2017; 28: 495 – 501.
dc.identifier.citedreferenceNaitoh M, Saburi K, Gotoh K, Kurita K, Ariji E. Metal artifacts from posterior mandibular implants as seen in CBCT. Implant Dent 2013; 22: 151 – 154.
dc.identifier.citedreferencePauwels R, Stamatakis H, Bosmans H, et al. Quantification of metal artifacts on cone beam computed tomography images. Clin Oral Implants Res 2013; 24 ( Suppl. A100 ): 94 – 99.
dc.identifier.citedreferenceZhang Y, Zhang L, Zhu XR, Lee AK, Chambers M, Dong L. Reducing metal artifacts in cone‐beam CT images by preprocessing projection data. Int J Radiat Oncol Biol Phys 2007; 67: 924 – 932.
dc.identifier.citedreferenceSchulze R, Heil U, Gross D, et al. Artefacts in CBCT: A review. Dentomaxillofac Radiol 2011; 40: 265 – 273.
dc.identifier.citedreferenceAltunbas C, Lai CJ, Zhong Y, Shaw CC. Reduction of ring artifacts in CBCT: Detection and correction of pixel gain variations in flat panel detectors. Med Phys 2014; 41: 091913.
dc.identifier.citedreferenceShokri A, Miresmaeili A, Farhadian N, Falah‐Kooshki S, Amini P, Mollaie N. Effect of changing the head position on accuracy of transverse measurements of the maxillofacial region made on cone beam computed tomography and conventional posterior‐anterior cephalograms. Dentomaxillofac Radiol 2017; 46: 20160180.
dc.identifier.citedreferenceAl‐Ekrish AA, Ekram M. A comparative study of the accuracy and reliability of multidetector computed tomography and cone beam computed tomography in the assessment of dental implant site dimensions. Dentomaxillofac Radiol 2011; 40: 67 – 75.
dc.identifier.citedreferenceSuomalainen A, Vehmas T, Kortesniemi M, Robinson S, Peltola J. Accuracy of linear measurements using dental cone beam and conventional multislice computed tomography. Dentomaxillofac Radiol 2008; 37: 10 – 17.
dc.identifier.citedreferenceFatemitabar SA, Nikgoo A. Multichannel computed tomography versus cone‐beam computed tomography: Linear accuracy of in vitro measurements of the maxilla for implant placement. Int J Oral Maxillofac Implants 2010; 25: 499 – 505.
dc.identifier.citedreferenceTsutsumi K, Chikui T, Okamura K, Yoshiura K. Accuracy of linear measurement and the measurement limits of thin objects with cone beam computed tomography: Effects of measurement directions and of phantom locations in the fields of view. Int J Oral Maxillofac Implants 2011; 26: 91 – 100.
dc.identifier.citedreferenceDreiseidler T, Tandon D, Kreppel M, et al. CBCT device dependency on the transfer accuracy from computer‐aided implantology procedures. Clin Oral Implants Res 2012; 23: 1089 – 1097.
dc.identifier.citedreferenceDreiseidler T, Tandon D, Ritter L, et al. Accuracy of a newly developed open‐source system for dental implant planning. Int J Oral Maxillofac Implants 2012; 27: 128 – 137.
dc.identifier.citedreferenceMangione F, Meleo D, Talocco M, Pecci R, Pacifici L, Bedini R. Comparative evaluation of the accuracy of linear measurements between cone beam computed tomography and 3D microtomography. Ann Ist Super Sanita 2013; 49: 261 – 265.
dc.identifier.citedreferenceHalperin‐Sternfeld M, Machtei EE, Horwitz J. Diagnostic accuracy of cone beam computed tomography for dimensional linear measurements in the mandible. Int J Oral Maxillofac Implants 2014; 29: 593 – 599.
dc.identifier.citedreferenceNikneshan S, Aval SH, Bakhshalian N, Shahab S, Mohammadpour M, Sarikhani S. Accuracy of linear measurement using cone‐beam computed tomography at different reconstruction angles. Imaging Sci Dent 2014; 44: 257 – 262.
dc.identifier.citedreferenceEgbert N, Cagna DR, Ahuja S, Wicks RA. Accuracy and reliability of stitched cone‐beam computed tomography images. Imaging Sci Dent 2015; 45: 41 – 47.
dc.identifier.citedreferenceLuangchana P, Pornprasertsuk‐Damrongsri S, Kiattavorncharoen S, Jirajariyavej B. Accuracy of linear measurements using cone beam computed tomography and panoramic radiography in dental implant treatment planning. Int J Oral Maxillofac Implants 2015; 30: 1287 – 1294.
dc.identifier.citedreferenceSabban H, Mahdian M, Dhingra A, Lurie AG, Tadinada A. Evaluation of linear measurements of implant sites based on head orientation during acquisition: An ex vivo study using cone‐beam computed tomography. Imaging Sci Dent 2015; 45: 73 – 80.
dc.identifier.citedreferenceSheikhi M, Dakhil‐Alian M, Bahreinian Z. Accuracy and reliability of linear measurements using tangential projection and cone beam computed tomography. Dent Res J (Isfahan) 2015; 12: 271 – 277.
dc.identifier.citedreferenceShokri A, Khajeh S. In vitro comparison of the effect of different slice thicknesses on the accuracy of linear measurements on cone beam computed tomography images in implant sites. J Craniofac Surg 2015; 26: 157 – 160.
dc.identifier.citedreferenceGanguly R, Ramesh A, Pagni S. The accuracy of linear measurements of maxillary and mandibular edentulous sites in cone‐beam computed tomography images with different fields of view and voxel sizes under simulated clinical conditions. Imaging Sci Dent 2016; 46: 93 – 101.
dc.identifier.citedreferenceDreiseidler T, Neugebauer J, Ritter L, et al. Accuracy of a newly developed integrated system for dental implant planning. Clin Oral Implants Res 2009; 20: 1191 – 1199.
dc.identifier.citedreferenceMadrigal C, Ortega R, Meniz C, López‐Quiles J. Study of available bone for interforaminal implant treatment using cone‐beam computed tomography. Med Oral Patol Oral Cir Bucal 2008; 13: E307 – E312.
dc.identifier.citedreferenceVeyre‐Goulet S, Fortin T, Thierry A. Accuracy of linear measurement provided by cone beam computed tomography to assess bone quantity in the posterior maxilla: A human cadaver study. Clin Implant Dent Relat Res 2008; 10: 226 – 230.
dc.identifier.citedreferenceAbboud M, Orentlicher G. An open system approach for surgical guide production. J Oral Maxillofac Surg 2011; 69: e519 – e524.
dc.identifier.citedreferenceFlügge T, Derksen W, Te Poel J, Hassan B, Nelson K, Wismeijer D. Registration of cone beam computed tomography data and intraoral surface scans–A prerequisite for guided implant surgery with CAD/CAM drilling guides. Clin Oral Implants Res 2017; 28: 1113 – 1118.
dc.identifier.citedreferenceRitter L, Reiz SD, Rothamel D, et al. Registration accuracy of three‐dimensional surface and cone beam computed tomography data for virtual implant planning. Clin Oral Implants Res 2012; 23: 447 – 452.
dc.identifier.citedreferenceWorthington P, Rubenstein J, Hatcher DC. The role of cone‐beam computed tomography in the planning and placement of implants. J Am Dent Assoc 2010; 141 ( Suppl. 3 ): 19S – 24S.
dc.identifier.citedreferenceFornell J, Johansson LA, Bolin A, Isaksson S, Sennerby L. Flapless, CBCT‐guided osteotome sinus floor elevation with simultaneous implant installation. I: Radiographic examination and surgical technique. A prospective 1‐year follow‐up. Clin Oral Implants Res 2012; 23: 28 – 34.
dc.identifier.citedreferenceNickenig HJ, Eitner S. Reliability of implant placement after virtual planning of implant positions using cone beam CT data and surgical (guide) templates. J Craniomaxillofac Surg 2007; 35: 207 – 211.
dc.identifier.citedreferenceMurat S, Kamburoğlu K, Özen T. Accuracy of a newly developed cone‐beam computerized tomography‐aided surgical guidance system for dental implant placement: An ex vivo study. J Oral Implantol 2012; 38: 706 – 712.
dc.identifier.citedreferencePatel N. Integrating three‐dimensional digital technologies for comprehensive implant dentistry. J Am Dent Assoc 2010; 141 ( Suppl. 2 ): 20S – 24S.
dc.identifier.citedreferenceVermeulen J. The accuracy of implant placement by experienced surgeons: Guided vs freehand approach in a simulated plastic model. Int J Oral Maxillofac Implants 2017; 32: 617 – 624.
dc.identifier.citedreferenceRaico Gallardo YN, da Silva‐Olivio IRT, Mukai E, Morimoto S, Sesma N, Cordaro L. Accuracy comparison of guided surgery for dental implants according to the tissue of support: A systematic review and meta‐analysis. Clin Oral Implants Res 2017; 28: 602 – 612.
dc.identifier.citedreferenceNeumeister A, Schulz L, Glodecki C. Investigations on the accuracy of 3D‐printed drill guides for dental implantology. Int J Comput Dent 2017; 20: 35 – 51.
dc.identifier.citedreferenceYim JH, Ryu DM, Lee BS, Kwon YD. Analysis of digitalized panorama and cone beam computed tomographic image distortion for the diagnosis of dental implant surgery. J Craniofac Surg 2011; 22: 669 – 673.
dc.identifier.citedreferenceBohner LOL, Tortamano P, Marotti J. Accuracy of linear measurements around dental implants by means of cone beam computed tomography with different exposure parameters. Dentomaxillofac Radiol 2017; 46: 20160377.
dc.identifier.citedreferenceCremonini CC, Dumas M, Pannuti CM, Neto JB, Cavalcanti MG, Lima LA. Assessment of linear measurements of bone for implant sites in the presence of metallic artefacts using cone beam computed tomography and multislice computed tomography. Int J Oral Maxillofac Surg 2011; 40: 845 – 850.
dc.identifier.citedreferenceHeiland M, Pohlenz P, Blessmann M, et al. Navigated implantation after microsurgical bone transfer using intraoperatively acquired cone‐beam computed tomography data sets. Int J Oral Maxillofac Surg 2008; 37: 70 – 75.
dc.identifier.citedreferenceAngelopoulos C, Thomas SL, Hechler S, Parissis N, Hlavacek M. Comparison between digital panoramic radiography and cone‐beam computed tomography for the identification of the mandibular canal as part of presurgical dental implant assessment. J Oral Maxillofac Surg 2008; 66: 2130 – 2135 (erratum 2008;66:2657).
dc.identifier.citedreferenceBornstein MM, Balsiger R, Sendi P, von Arx T. Morphology of the nasopalatine canal and dental implant surgery: A radiographic analysis of 100 consecutive patients using limited cone‐beam computed tomography. Clin Oral Implants Res 2011; 22: 295 – 301.
dc.identifier.citedreferenceChan HL, Brooks SL, Fu JH, Yeh CY, Rudek I, Wang HL. Cross‐sectional analysis of the mandibular lingual concavity using cone beam computed tomography. Clin Oral Implants Res 2011; 22: 201 – 206.
dc.identifier.citedreferenceLofthag‐Hansen S, Gröndahl K, Ekestubbe A. Cone‐beam CT for preoperative implant planning in the posterior mandible: Visibility of anatomic landmarks. Clin Implant Dent Relat Res 2009; 11: 246 – 255.
dc.identifier.citedreferenceUchida Y, Noguchi N, Goto M, et al. Measurement of anterior loop length for the mandibular canal and diameter of the mandibular incisive canal to avoid nerve damage when installing endosseous implants in the interforaminal region: A second attempt introducing cone beam computed tomography. J Oral Maxillofac Surg 2009; 67: 744 – 750.
dc.identifier.citedreferenceRosa MB, Sotto‐Maior BS, Machado VdeC, Francischone CE. Retrospective study of the anterior loop of the inferior alveolar nerve and the incisive canal using cone beam computed tomography. Int J Oral Maxillofac Implants 2013; 28: 388 – 392.
dc.identifier.citedreferenceRomanos GE, Gupta B, Davids R, Damouras M, Crespi R. Distribution of endosseous bony canals in the mandibular symphysis as detected with cone beam computed tomography. Int J Oral Maxillofac Implants 2012; 27: 273 – 277.
dc.identifier.citedreferenceRaitz R, Shimura E, Chilvarquer I, Fenyo‐Pereira M. Assessment of the mandibular incisive canal by panoramic radiograph and cone‐beam computed tomography. Int J Dent 2014; 2014: 187085.
dc.identifier.citedreferenceOrhan K, Aksoy S, Bilecenoglu B, Sakul BU, Paksoy CS. Evaluation of bifid mandibular canals with cone‐beam computed tomography in a Turkish adult population: A retrospective study. Surg Radiol Anat 2011; 33: 501 – 507.
dc.identifier.citedreferenceOgawa A, Fukuta Y, Nakasato H, Nakasato S. Cone beam computed tomographic evaluation of nutrient canals and foramina in the anterior region of the mandible. Surg Radiol Anat 2016; 38: 1029 – 1032.
dc.identifier.citedreferenceOettlé AC, Fourie J, Human‐Baron R, van Zyl AW. The midline mandibular lingual canal: Importance in implant surgery. Clin Implant Dent Relat Res 2015; 17: 93 – 101.
dc.identifier.citedreferenceMakris N, Stamatakis H, Syriopoulos K, Tsiklakis K, van der Stelt PF. Evaluation of the visibility and the course of the mandibular incisive canal and the lingual foramen using cone‐beam computed tomography. Clin Oral Implants Res 2010; 21: 766 – 771.
dc.identifier.citedreferenceKoivisto T, Chiona D, Milroy LL, McClanahan SB, Ahmad M, Bowles WR. Mandibular canal location: Cone‐beam computed tomography examination. J Endod 2016; 42: 1018 – 1021.
dc.identifier.citedreferenceFilo K, Schneider T, Locher MC, Kruse AL, Lübbers HT. The inferior alveolar nerve’s loop at the mental foramen and its implications for surgery. J Am Dent Assoc 2014; 145: 260 – 269.
dc.identifier.citedreferenceEshak M, Brooks S, Abdel‐Wahed N, Edwards PC. Cone beam CT evaluation of the presence of anatomic accessory canals in the jaws. Dentomaxillofac Radiol 2014; 43: 20130259.
dc.identifier.citedreferencedo Nascimento EH, Dos Anjos Pontual ML, Dos Anjos Pontual A, et al. Assessment of the anterior loop of the mandibular canal: A study using cone‐beam computed tomography. Imaging Sci Dent 2016; 46: 69 – 75.
dc.identifier.citedreferenceAbdolali F, Zoroofi RA, Abdolali M, Yokota F, Otake Y, Sato Y. Automatic segmentation of mandibular canal in cone beam CT images using conditional statistical shape model and fast marching. Int J Comput Assist Radiol Surg 2017; 12: 581 – 593.
dc.identifier.citedreferenceDanesh‐Sani SA, Movahed A, ElChaar ES, Chong Chan K, Amintavakoli N. Radiographic evaluation of maxillary sinus lateral wall and posterior superior alveolar artery anatomy: A cone‐beam computed tomographic study. Clin Implant Dent Relat Res 2017; 19: 151 – 160.
dc.identifier.citedreferenceSchropp L, Wenzel A, Spin‐Neto R, Stavropoulos A. Fate of the buccal bone at implants placed early, delayed, or late after tooth extraction analyzed by cone beam CT: 10‐year results from a randomized, controlled, clinical study. Clin Oral Implants Res 2015; 26: 492 – 500.
dc.identifier.citedreferenceHuang Y, Dessel JV, Depypere M, et al. Validating cone‐beam computed tomography for peri‐implant bone morphometric analysis. Bone Res 2014; 2: 14010.
dc.identifier.citedreferenceFu JH, Oh TJ, Benavides E, Rudek I, Wang HL. A randomized clinical trial evaluating the efficacy of the sandwich bone augmentation technique in increasing buccal bone thickness during implant placement surgery: I. Clinical and radiographic parameters. Clin Oral Implants Res 2014; 25: 458 – 467.
dc.identifier.citedreferenceJang HY, Kim HC, Lee SC, Lee JY. Choice of graft material in relation to maxillary sinus width in internal sinus floor augmentation. J Oral Maxillofac Surg 2010; 68: 1859 – 1868.
dc.identifier.citedreferenceDikicier S, Dikicier E, Karacayli U. Maxillary sinus augmentation and implant placement using venous blood without graft material: A case letter. J Oral Implantol 2014; 40: 615 – 618.
dc.identifier.citedreferenceGarbacea A, Lozada JL, Church CA, et al. The incidence of maxillary sinus membrane perforation during endoscopically assessed crestal sinus floor elevation: A pilot study. J Oral Implantol 2012; 38: 345 – 359.
dc.identifier.citedreferenceJohansson LA, Isaksson S, Adolfsson E, Lindh C, Sennerby L. Bone regeneration using a hollow hydroxyapatite space‐maintaining device for maxillary sinus floor augmentation—A clinical pilot study. Clin Implant Dent Relat Res 2012; 14: 575 – 584.
dc.identifier.citedreferencePauwels R. Cone beam CT for dental and maxillofacial imaging: Dose matters. Radiat Prot Dosimetry 2015; 165: 156 – 161.
dc.identifier.citedreferenceYoshimine S, Nishihara K, Nozoe E, Yoshimine M, Nakamura N. Topographic analysis of maxillary premolars and molars and maxillary sinus using cone beam computed tomography. Implant Dent 2012; 21: 528 – 535.
dc.identifier.citedreferenceDobele I, Kise L, Apse P, Kragis G, Bigestans A. Radiographic assessment of findings in the maxillary sinus using cone‐beam computed tomography. Stomatologija 2013; 15: 119 – 122.
dc.identifier.citedreferenceSchneider AC, Bragger U, Sendi P, Caversaccio MD, Buser D, Bornstein MM. Characteristics and dimensions of the sinus membrane in patients referred for single‐implant treatment in the posterior maxilla: A cone beam computed tomographic analysis. Int J Oral Maxillofac Implants 2013; 28: 587 – 596.
dc.identifier.citedreferenceNicolielo LF, Van Dessel J, Jacobs R, Martens W, Lambrichts I, Rubira‐Bullen IR. Presurgical CBCT assessment of maxillary neurovascularization in relation to maxillary sinus augmentation procedures and posterior implant placement. Surg Radiol Anat 2014; 36: 915 – 924.
dc.identifier.citedreferenceShiki K, Tanaka T, Kito S, et al. The significance of cone beam computed tomography for the visualization of anatomical variations and lesions in the maxillary sinus for patients hoping to have dental implant‐supported maxillary restorations in a private dental office in Japan. Head Face Med 2014; 10: 20.
dc.identifier.citedreferenceVogiatzi T, Kloukos D, Scarfe WC, Bornstein MM. Incidence of anatomical variations and disease of the maxillary sinuses as identified by cone beam computed tomography: A systematic review. Int J Oral Maxillofac Implants 2014; 29: 1301 – 1314.
dc.identifier.citedreferenceTadinada A, Fung K, Thacker S, Mahdian M, Jadhav A, Schincaglia GP. Radiographic evaluation of the maxillary sinus prior to dental implant therapy: A comparison between two‐dimensional and three‐dimensional radiographic imaging. Imaging Sci Dent 2015; 45: 169 – 174.
dc.identifier.citedreferenceTadinada A, Jalali E, Al‐Salman W, Jambhekar S, Katechia B, Almas K. Prevalence of bony septa, antral pathology, and dimensions of the maxillary sinus from a sinus augmentation perspective: A retrospective cone‐beam computed tomography study. Imaging Sci Dent 2016; 46: 109 – 115.
dc.identifier.citedreferenceShahidi S, Zamiri B, Momeni Danaei S, Salehi S, Hamedani S. Evaluation of anatomic variations in maxillary sinus with the aid of cone beam computed tomography (CBCT) in a population in south of Iran. J Dent (Shiraz) 2016; 17: 7 – 15.
dc.identifier.citedreferenceRege IC, Sousa TO, Leles CR, Mendonça EF. Occurrence of maxillary sinus abnormalities detected by cone beam CT in asymptomatic patients. BMC Oral Health 2012; 12: 30.
dc.identifier.citedreferenceFalco A, Amoroso C, Berardini M, D’Archivio L. A retrospective study of clinical and radiologic outcomes of 69 consecutive maxillary sinus augmentations associated with functional endoscopic sinus surgery. Int J Oral Maxillofac Implants 2015; 30: 633 – 638.
dc.identifier.citedreferenceTobita T, Nakamura M, Ueno T, Sano K. Sinus augmentation surgery after endoscopic sinus surgery for the treatment of chronic maxillary sinusitis: A case report. Implant Dent 2011; 20: 337 – 340.
dc.identifier.citedreferenceGonzález‐García A, González‐García J, Diniz‐Freitas M, García‐García A, Bullón P. Accidental displacement and migration of endosseous implants into adjacent craniofacial structures: A review and update. Med Oral Patol Oral Cir Bucal 2012; 17: e769 – e774.
dc.identifier.citedreferenceLonghini AB, Branstetter BF, Ferguson BJ. Radiology quiz case 1. [Diagnosis: Acute maxillary sinusitis secondary to a migrated dental implant obstructing the ostiomeatal complex]. Arch Otolaryngol Head Neck Surg 2011; 137: 823, 826.
dc.identifier.citedreferenceAranyarachkul P, Caruso J, Gantes B, et al. Bone density assessments of dental implant sites: 2. Quantitative cone‐beam computerized tomography. Int J Oral Maxillofac Implants 2005; 20: 416 – 424.
dc.identifier.citedreferenceBrosh T, Yekaterina BE, Pilo R, Shpack N, Geron S. Can cone beam CT predict the hardness of interradicular cortical bone? Head Face Med 2014; 10: 12.
dc.identifier.citedreferenceFuster‐Torres MA, Peñarrocha‐Diago M, Peñarrocha‐Oltra D, Peñarrocha‐Diago M. Relationships between bone density values from cone beam computed tomography, maximum insertion torque, and resonance frequency analysis at implant placement: A pilot study. Int J Oral Maxillofac Implants 2011; 26: 1051 – 1056.
dc.identifier.citedreferenceGonzález‐García R, Monje F. The reliability of cone‐beam computed tomography to assess bone density at dental implant recipient sites: A histomorphometric analysis by micro‐CT. Clin Oral Implants Res 2013; 24: 871 – 879.
dc.identifier.citedreferenceHao Y, Zhao W, Wang Y, Yu J, Zou D. Assessments of jaw bone density at implant sites using 3D cone‐beam computed tomography. Eur Rev Med Pharmacol Sci 2014; 18: 1398 – 1403.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.