Show simple item record

Technical Advance: caspase‐1 activation and IL‐1β release correlate with the degree of lysosome damage, as illustrated by a novel imaging method to quantify phagolysosome damage

dc.contributor.authorDavis, Michael J.
dc.contributor.authorSwanson, Joel A.
dc.date.accessioned2018-02-05T16:47:44Z
dc.date.available2018-02-05T16:47:44Z
dc.date.issued2010-10
dc.identifier.citationDavis, Michael J.; Swanson, Joel A. (2010). "Technical Advance: caspase‐1 activation and IL‐1β release correlate with the degree of lysosome damage, as illustrated by a novel imaging method to quantify phagolysosome damage." Journal of Leukocyte Biology 88(4): 813-822.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/142182
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpH
dc.subject.otherphagocytosis
dc.subject.othermicroscopy
dc.titleTechnical Advance: caspase‐1 activation and IL‐1β release correlate with the degree of lysosome damage, as illustrated by a novel imaging method to quantify phagolysosome damage
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
dc.contributor.affiliationumProgram in Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142182/1/jlb0813.pdf
dc.identifier.doi10.1189/jlb.0310159
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferenceSwanson, J. A. ( 1989 ) Phorbol esters stimulate macropinocytosis and solute flow through macrophages. J. Cell Sci. 94, 135 – 142.
dc.identifier.citedreferencePetrilli, V., Papin, S., Dostert, C., Mayor, A., Martinon, F., Tschopp, J. ( 2007 ) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583 – 1589.
dc.identifier.citedreferenceDostert, C., Guarda, G., Romero, J. F., Menu, P., Gross, O., Tardivel, A., Suva, M. L., Stehle, J. C., Kopf, M., Stamenkovic, I., Corradin, G., Tschopp, J. ( 2009 ) Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS One 4, e6510.
dc.identifier.citedreferenceNewman, Z. L., Leppla, S. H., Moayeri, M. ( 2009 ) CA‐074Me protection against anthrax lethal toxin. Infect. Immun. 77, 4327 – 4336.
dc.identifier.citedreferenceNorbury, C. C., Hewlett, L. J., Prescott, A. R., Shastri, N., Watts, C. ( 1995 ) Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity 3, 783 – 791.
dc.identifier.citedreferenceRock, K. L., Rothstein, L., Fleischacker, C., Gamble, S. ( 1992 ) Inhibition of class I and class II MHC‐restricted antigen presentation by cytotoxic T lymphocytes specific for an exogenous antigen. J. Immunol. 148, 3028 – 3033.
dc.identifier.citedreferenceOh, Y. K., Harding, C. V., Swanson, J. A. ( 1997 ) The efficiency of antigen delivery from macrophage phagosomes into cytoplasm for MHC class I‐ restricted antigen presentation. Vaccine 15, 511 – 518.
dc.identifier.citedreferenceKovacsovics‐Bankowski, M., Clark, K., Benacerraf, B., Rock, K. L. ( 1993 ) Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc. Natl. Acad. Sci. USA 90, 4942 – 4946.
dc.identifier.citedreferenceHarding, C. V., Song, R. ( 1994 ) Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J. Immunol. 153, 4925 – 4933.
dc.identifier.citedreferenceReis e Sousa, C., Germain, R. N. ( 1995 ) Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. J. Exp. Med. 182, 841 – 851.
dc.identifier.citedreferenceShaughnessy, L. M., Hoppe, A. D., Christensen, K. A., Swanson, J. A. ( 2006 ) Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell. Microbiol. 8, 781 – 792.
dc.identifier.citedreferenceHoppe, A., Christensen, K., Swanson, J. A. ( 2002 ) Fluorescence resonance energy transfer‐based stoichiometry in living cells. Biophys. J. 83, 3652 – 3664.
dc.identifier.citedreferenceKnapp, P. E., Swanson, J. A. ( 1990 ) Plasticity of the tubular lysosomal compartment in macrophages. J. Cell Sci. 95, 433 – 439.
dc.identifier.citedreferenceTsang, A. W., Oestergaard, K., Myers, J. T., Swanson, J. A. ( 2000 ) Altered membrane trafficking in activated bone marrow‐derived macrophages. J. Leukoc. Biol. 68, 487 – 494.
dc.identifier.citedreferenceRacoosin, E. L., Swanson, J. A. ( 1989 ) Macrophage colony‐stimulating factor (rM‐CSF) stimulates pinocytosis in bone marrow‐derived macrophages. J. Exp. Med. 170, 1635 – 1648.
dc.identifier.citedreferenceRock, K. L., Rothstein, L., Gamble, S., Fleischacker, C. ( 1993 ) Characterization of antigen‐presenting cells that present exogenous antigens in association with class I MHC molecules. J. Immunol. 150, 438 – 446.
dc.identifier.citedreferenceSutterwala, F. S., Ogura, Y., Szczepanik, M., Lara‐Tejero, M., Lichtenberger, G. S., Grant, E. P., Bertin, J., Coyle, A. J., Galan, J. E., Askenase, P. W., Flavell, R. A. ( 2006 ) Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of caspase‐1. Immunity 24, 317 – 327.
dc.identifier.citedreferenceTing, J. P., Willingham, S. B., Bergstralh, D. T. ( 2008 ) NLRs at the intersection of cell death and immunity. Nat. Rev. Immunol. 8, 372 – 379.
dc.identifier.citedreferenceWarren, S. E., Mao, D. P., Rodriguez, A. E., Miao, E. A., Aderem, A. ( 2008 ) Multiple Nod‐like receptors activate caspase 1 during Listeria monocytogenes infection. J. Immunol. 180, 7558 – 7564.
dc.identifier.citedreferenceFernandes‐Alnemri, T., Yu, J. W., Juliana, C., Solorzano, L., Kang, S., Wu, J., Datta, P., McCormick, M., Huang, L., McDermott, E., Eisenlohr, L., Landel, C. P., Alnemri, E. S. ( 2010 ) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 11, 385 – 393.
dc.identifier.citedreferenceScott, C. C., Botelho, R. J., Grinstein, S. ( 2003 ) Phagosome maturation: a few bugs in the system. J. Membr. Biol. 193, 137 – 152.
dc.identifier.citedreferenceKinchen, J. M., Ravichandran, K. S. ( 2008 ) Phagosome maturation: going through the acid test. Nat. Rev. Mol. Cell Biol. 9, 781 – 795.
dc.identifier.citedreferenceChristensen, K. A., Myers, J. T., Swanson, J. A. ( 2002 ) pH‐Dependent regulation of lysosomal calcium in macrophages. J. Cell Sci. 115, 599 – 607.
dc.identifier.citedreferenceBurgdorf, S., Kurts, C. ( 2008 ) Endocytosis mechanisms and the cell biology of antigen presentation. Curr. Opin. Immunol. 20, 89 – 95.
dc.identifier.citedreferenceRay, K., Marteyn, B., Sansonetti, P. J., Tang, C. M. ( 2009 ) Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat. Rev. Microbiol. 7, 333 – 340.
dc.identifier.citedreferenceMartinon, F., Burns, K., Tschopp, J. ( 2002 ) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of prolL‐β. Mol. Cell 10, 417 – 426.
dc.identifier.citedreferenceMartinon, F., Mayor, A., Tschopp, J. ( 2009 ) The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229 – 265.
dc.identifier.citedreferenceEder, C. ( 2009 ) Mechanisms of interleukin‐1β release. Immunobiology 214, 543 – 553.
dc.identifier.citedreferenceThornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., Kostura, M. J., Miller, D. K., Molineaux, S. M., Weidner, J. R., Aunins, J., et al. ( 1992 ) A novel heterodimeric cysteine protease is required for interleukin‐1 β processing in monocytes. Nature 356, 768 – 774.
dc.identifier.citedreferenceDinarello, C. A. ( 2009 ) Immunological and inflammatory functions of the interleukin‐1 family. Annu. Rev. Immunol. 27, 519 – 550.
dc.identifier.citedreferenceMartinon, F., Petrilli, V., Mayor, A., Tardivel, A., Tschopp, J. ( 2006 ) Gout‐associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237 – 241.
dc.identifier.citedreferenceMariathasan, S., Weiss, D. S., Newton, K., McBride, J., O’Rourke, K., Roose‐Girma, M., Lee, W. P., Weinrauch, Y., Monack, D. M., Dixit, V. M. ( 2006 ) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228 – 232.
dc.identifier.citedreferencePerregaux, D., Gabel, C. A. ( 1994 ) Interleukin‐1 β maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J. Biol. Chem. 269, 15195 – 15203.
dc.identifier.citedreferenceDostert, C., Petrilli, V., Van Bruggen, R., Steele, C., Mossman, B. T., Tschopp, J. ( 2008 ) Innate immune activation through Nalp3 inflamma‐some sensing of asbestos and silica. Science 320, 674 – 677.
dc.identifier.citedreferenceHalle, A., Hornung, V., Petzold, G. C., Stewart, C. R., Monks, B. G., Reinheckel, T., Fitzgerald, K. A., Latz, E., Moore, K. J., Golenbock, D. T. ( 2008 ) The NALP3 inflammasome is involved in the innate immune response to amyloid‐β. Nat. Immunol. 9, 857 – 865.
dc.identifier.citedreferenceCassel, S. L., Eisenbarth, S. C., Iyer, S. S., Sadler, J. J., Colegio, O. R., Tephly, L. A., Carter, A. B., Rothman, P. B., Flavell, R. A., Sutterwala, F. S. ( 2008 ) The Nalp3 inflammasome is essential for the development of silicosis. Proc. Natl. Acad. Sci. USA 105, 9035 – 9040.
dc.identifier.citedreferenceHornung, V., Bauernfeind, F., Halle, A., Samstad, E. O., Kono, H., Rock, K. L., Fitzgerald, K. A., Latz, E. ( 2008 ) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847 – 856.
dc.identifier.citedreferenceEisenbarth, S. C., Colegio, O. R., O’Connor, W., Sutterwala, F. S., Flavell, R. A. ( 2008 ) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122 – 1126.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.