Show simple item record

Room‐Temperature‐Phosphorescence‐Based Dissolved Oxygen Detection by Core‐Shell Polymer Nanoparticles Containing Metal‐Free Organic Phosphors

dc.contributor.authorYu, Youngchang
dc.contributor.authorKwon, Min Sang
dc.contributor.authorJung, Jaehun
dc.contributor.authorZeng, Yingying
dc.contributor.authorKim, Mounggon
dc.contributor.authorChung, Kyeongwoon
dc.contributor.authorGierschner, Johannes
dc.contributor.authorYouk, Ji Ho
dc.contributor.authorBorisov, Sergey M.
dc.contributor.authorKim, Jinsang
dc.date.accessioned2018-02-05T16:48:03Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-12-18
dc.identifier.citationYu, Youngchang; Kwon, Min Sang; Jung, Jaehun; Zeng, Yingying; Kim, Mounggon; Chung, Kyeongwoon; Gierschner, Johannes; Youk, Ji Ho; Borisov, Sergey M.; Kim, Jinsang (2017). "Room‐Temperature‐Phosphorescence‐Based Dissolved Oxygen Detection by Core‐Shell Polymer Nanoparticles Containing Metal‐Free Organic Phosphors." Angewandte Chemie International Edition 56(51): 16207-16211.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/142200
dc.description.abstractThe highly sensitive optical detection of oxygen including dissolved oxygen (DO) is of great interest in various applications. We devised a novel room‐temperature‐phosphorescence (RTP)‐based oxygen detection platform by constructing core–shell nanoparticles with water‐soluble polymethyloxazoline shells and oxygen‐permeable polystyrene cores crosslinked with metal‐free purely organic phosphors. The resulting nanoparticles show a very high sensitivity for DO with a limit of detection (LOD) of 60 nm and can be readily used for oxygen quantification in aqueous environments as well as the gaseous phase.Gl‐O2‐w!: A dissolved oxygen (DO)‐detection platform based on core–shell nanoparticles with a water‐soluble polymethyloxazoline shell and oxygen‐permeable polystyrene core crosslinked with metal‐free purely organic phosphors is reported. The resulting nanoparticles show a very high sensitivity and can be used for oxygen quantification in a variety of environments.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherroom-temperature phosphorescence
dc.subject.otherpolymer nanoparticles
dc.subject.othermetal-free organic phosphors
dc.subject.otherdissolved oxygen
dc.subject.othercrosslinking
dc.titleRoom‐Temperature‐Phosphorescence‐Based Dissolved Oxygen Detection by Core‐Shell Polymer Nanoparticles Containing Metal‐Free Organic Phosphors
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142200/1/anie201708606-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142200/2/anie201708606.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142200/3/anie201708606_am.pdf
dc.identifier.doi10.1002/anie.201708606
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceY. Shoji, Y. Ikabata, Q. Wang, D. Nemoto, A. Sakamoto, N. Tanaka, J. Seino, H. Nakai, T. Fukushima, J. Am. Chem. Soc. 2017, 139, 2728 – 2733.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Hirata, K. Totani, J. Zhang, T. Yamashita, H. Kaji, S. R. Marder, T. Watanabe, C. Adachi, Adv. Funct. Mater. 2013, 23, 3386 – 3397;
dc.identifier.citedreferenceR. Kabe, N. Notsuka, K. Yoshida, C. Adachi, Adv. Mater. 2016, 28, 655 – 660.
dc.identifier.citedreference 
dc.identifier.citedreferenceZ. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685 – 690;
dc.identifier.citedreferenceX. Zhen, Y. Tao, Z. An, P. Chen, C. Xu, R. Chen, W. Huang, K. Pu, Adv. Mater. 2017, 29, 1606665;
dc.identifier.citedreferenceS. Cai, H. Shi, J. Li, L. Gu, Y. Ni, Z. Cheng, S. Wang, W. Xiong, L. Li, Z. An, W. Huang, Adv. Mater. 2017, 29, 1701244.
dc.identifier.citedreferenceX. Chen, C. Xu, T. Wang, C. Zhou, J. Du, Z. Wang, H. Xu, T. Xie, G. Bi, J. Jiang, X. Zhang, J. N. Demas, C. O. Trindle, Y. Luo, G. Zhang, Angew. Chem. Int. Ed. 2016, 55, 9872 – 9876; Angew. Chem. 2016, 128, 10026 – 10030.
dc.identifier.citedreferenceZ. Mao, Z. Yang, Y. Mu, Y. Zhang, Y. Wang, Z. Chi, C. Lo, S. Liu, A. Lien, J. Xu, Angew. Chem. Int. Ed. 2015, 54, 6270 – 6273; Angew. Chem. 2015, 127, 6368 – 6371.
dc.identifier.citedreferenceD. Chaudhuri, E. Sigmund, A. Meyer, L. Rock, P. Klemm, S. Lautenschlager, A. Schmid, S. R. Yost, T. V. Voorhis, S. Bange, S. Hoger, J. M. Lupton, Angew. Chem. Int. Ed. 2013, 52, 13449 – 13452; Angew. Chem. 2013, 125, 13691 – 13694.
dc.identifier.citedreferenceS. Reineke, M. A. Baldo, Sci. Rep. 2014, 4, 3797.
dc.identifier.citedreferenceR. A. Petros, J. M. DeSimone, Nat. Rev. Drug Discovery 2010, 9, 615 – 627.
dc.identifier.citedreferenceY. C. Yu, H. S. Cho, W. Yu, J. H. Youk, Polymer 2014, 55, 5986 – 5990.
dc.identifier.citedreferenceX. Zhang, S. Boisse, W. Zhang, P. Beaunier, F. D’Agosto, J. Rieger, B. Charleux, Macromolecules 2011, 44, 4149 – 4158.
dc.identifier.citedreferenceWithout incorporation of the PAAm block, RAFT polymerization of styrene was not successful because of a few possible problems such as low conversion, homopolymer formation, and broad size distribution of nanoparticles.
dc.identifier.citedreferenceO. S. Wolfbeis, BioEssays 2015, 37, 921 – 928.
dc.identifier.citedreferenceE. R. Carraway, J. N. Demas, B. A. DeGraff, J. R. Bacon, Anal. Chem. 1991, 63, 337 – 342.
dc.identifier.citedreferenceS. M. Borisov, P. Lehner, I. Klimant, Anal. Chim. Acta 2011, 690, 108 – 115.
dc.identifier.citedreferenceN. Revsbech, L. H. Larsen, J. Gundersen, T. Dalsgaard, O. Ulloa, Limnol. Oceanogr. Methods 2009, 7, 371 – 381.
dc.identifier.citedreferenceS. M. Borisov, I. Klimant, Anal. Chem. 2007, 79, 7501 – 7509.
dc.identifier.citedreferenceK. Eaton, P, Douglas, Sens. Actuators B 2002, 82, 94 – 104.
dc.identifier.citedreferenceM. Schäferling, Angew. Chem. Int. Ed. 2012, 51, 3532 – 3554; Angew. Chem. 2012, 124, 3590 – 3614.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Larsen, S. M. Borisov, B. Grunwald, I. Klimant, R. N. Guld, Limnol. Oceanogr. Methods 2011, 9, 348 – 360;
dc.identifier.citedreferenceX. Wang, R. J. Meier, M. Link, O. S. Wolfbeis, Angew. Chem. Int. Ed. 2010, 49, 4907 – 4909; Angew. Chem. 2010, 122, 5027 – 5029;
dc.identifier.citedreferenceR. J. Meier, L. H. Fischer, O. S. Wolfbeis, M. Schaferling, Sens. Actuators B 2013, 177, 500 – 506.
dc.identifier.citedreferenceThe photostability of our optical sensor system is discussed in detail in the Supporting Information.
dc.identifier.citedreferenceK. Tanno, Bull. Chem. Soc. Jpn. 1964, 37, 804 – 810.
dc.identifier.citedreferenceT. Nakano, K. Hoshi, S. Baba, Vacuum 2008, 83, 467 – 469.
dc.identifier.citedreferenceH. Berger, Microelectron. Eng. 1991, 10, 259 – 267.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. A. Stolper, N. P. Revsbech, D. E. Canfield, Proc. Natl. Acad. Sci. USA 2010, 107, 18755 – 18760;
dc.identifier.citedreferenceD. Shevela, K. Beckmann, J. Clausen, W. Junge, J. Messinger, Proc. Natl. Acad. Sci. USA 2011, 108, 3602 – 3607.
dc.identifier.citedreferenceX. Wang, O. S. Wolfbeis, Chem. Soc. Rev. 2014, 43, 3666 – 3761.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Quaranta, S. M. Borisov, I. Klimant, Bioanal. Rev. 2012, 4, 115 – 157;
dc.identifier.citedreferenceR. Briñas, T. Troxler, R. M. Hochstrasser, S. A. Vinogradov, J. Am. Chem. Soc. 2005, 127, 11851 – 11862;
dc.identifier.citedreferenceJ. A. Spencer, F. Ferraro, E. Roussakis, A. Klein, J. Wu, J. M. Runnels, W. Zaher, L. J. Mortensen, C. Alt, R. Turcotte, R. Yusuf, D. Cote, S. A. Vinogradov, D. T. Scadden, C. P. Lin, Nature 2014, 508, 269 – 273;
dc.identifier.citedreferenceY. Feng, J. Cheng, L. Zhou, X. Zhou, H. Xiang, Analyst 2012, 137, 4885 – 4901;
dc.identifier.citedreferenceS. M. Borisov, R. Fischer, R. Saf, I. Klimant, Adv. Funct. Mater. 2014, 24, 6548 – 6560.
dc.identifier.citedreferenceFor recent reviews on metal-free organic phosphors, see:
dc.identifier.citedreferenceS. Mukherjee, P. Thilagar, Chem. Commun. 2015, 51, 109988 – 111003;
dc.identifier.citedreferenceS. Xu, R. Chen, C. Zheng, W. Huang, Adv. Mater. 2016, 28, 9920 – 9940;
dc.identifier.citedreferenceM. Baroncini, G. Bergamini, P. Ceroni, Chem. Commun. 2017, 53, 2081 – 2093;
dc.identifier.citedreferenceS. Hirata, Adv. Opt. Mater. 2017, 5, 1700116.
dc.identifier.citedreferenceIt should be noted that a certain type of RTP emitters having high structural rigidity and small singlet–triplet energy gaps, such as benzophenone analogues, exhibits rather small Stokes shift.
dc.identifier.citedreference 
dc.identifier.citedreferenceP. Lehner, C. Staudinger, S. M. Borisov, I. Klimant, Nat. Commun. 2014, 5, 4460;
dc.identifier.citedreferenceS. Nagl, C. Baleizão, S. M. Borisov, I. Klimant, Angew. Chem. Int. Ed. 2007, 46, 2317 – 2319; Angew. Chem. 2007, 119, 2368 – 2371.
dc.identifier.citedreferenceS. Banerjee, R. T. Kuznetsova, D. B. Pankovsky, Sens. Actuators B 2015, 212, 229 – 234.
dc.identifier.citedreference 
dc.identifier.citedreferenceG. Zhang, J. Chen, S. J. Payn, S. E. Kooi, J. N. Demas, C. L. Fraser, J. Am. Chem. Soc. 2007, 129, 8942 – 8943;
dc.identifier.citedreferenceG. Zhang, G. M. Palmer, M. W. Dewhirst, C. L. Fraser, Nat. Mater. 2009, 8, 747 – 751;
dc.identifier.citedreferenceG. Zhang, J. Lu, M. Sabat, C. L. Fraser, J. Am. Chem. Soc. 2010, 132, 2160 – 2162.
dc.identifier.citedreference 
dc.identifier.citedreferenceO. Bolton, K. Lee, H. J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205 – 210;
dc.identifier.citedreferenceD. Lee, O. Bolton, B. C. Kim, J. H. Youk, S. Takayama, J. Kim, J. Am. Chem. Soc. 2013, 135, 6325 – 6329;
dc.identifier.citedreferenceM. S. Kwon, D. Lee, S. Seo, J. Jung, J. Kim, Angew. Chem. Int. Ed. 2014, 53, 11177 – 11181; Angew. Chem. 2014, 126, 11359 – 11363;
dc.identifier.citedreferenceM. S. Kwon, Y. Yu, C. Coburn, A. W. Phillips, K. Chung, A. Shanker, J. Jung, G. Kim, K. Pipe, S. R. Forrest, J. H. Youk, J. Gierschner, J. Kim, Nat. Commun. 2015, 6, 8947;
dc.identifier.citedreferenceO. Bolton, D. Lee, J. Jung, J. Kim, Chem. Mater. 2014, 26, 6644 – 6649.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. Z. Yuan, X. Y. Shen, H. Zhao, J. W. Y. Lam, L. Tang, P. Lu, C. Wang, Y. Liu, Z. Wang, Q. Zheng, J. Z. Sun, Y. Ma, B. Z. Tang, J. Phys. Chem. C 2010, 114, 6090 – 6099;
dc.identifier.citedreferenceY. Gong, G. Chen, Q. Peng, W. Z. Yuan, Y. Xie, S. Li, Y. Zhang, B. Z. Tang, Adv. Mater. 2015, 27, 6195 – 6201.
dc.identifier.citedreferenceM. Koch, K. Perumal, O. Blacque, J. A. Garg, R. Saiganesh, S. Kabilan, K. K. Balasubramanian, K. Venkatesan, Angew. Chem. Int. Ed. 2014, 53, 6378 – 6382; Angew. Chem. 2014, 126, 6496 – 6500.
dc.identifier.citedreferenceA. Fermi, G. Bergamini, M. Roy, M. Gingras, P. Ceroni, J. Am. Chem. Soc. 2014, 136, 6395 – 6400.
dc.identifier.citedreferenceY. Xie, Y. Ge, Q. Peng, C. Li, Q. Li, Z. Li, Adv. Mater. 2017, 29, 1606829.
dc.identifier.citedreferenceZ. Yang, Z. Mao, X. Zhang, D. Ou, Y. Mu, Y. Zhang, C. Zhao, S. Liu, Z. Chi, J. Xu, Y. Wu, P. Lu, A. Lien, M. R. Bryce, Angew. Chem. Int. Ed. 2016, 55, 2181 – 2185; Angew. Chem. 2016, 128, 2221 – 2225.
dc.identifier.citedreferenceJ. Xu, A. Takai, Y. Kobayashi, M. Takeuchi, Chem. Commun. 2013, 49, 8447 – 8449.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.