Show simple item record

Do Brown Trout Choose Locations with Reduced Turbulence?

dc.contributor.authorCotel, Aline J.
dc.contributor.authorWebb, Paul W.
dc.contributor.authorTritico, Hans
dc.date.accessioned2018-02-05T16:48:15Z
dc.date.available2018-02-05T16:48:15Z
dc.date.issued2006-05
dc.identifier.citationCotel, Aline J.; Webb, Paul W.; Tritico, Hans (2006). "Do Brown Trout Choose Locations with Reduced Turbulence?." Transactions of the American Fisheries Society 135(3): 610-619.
dc.identifier.issn0002-8487
dc.identifier.issn1548-8659
dc.identifier.urihttps://hdl.handle.net/2027.42/142211
dc.description.abstractThe physical habitat requirements of cover, depth, and current speed for brown trout Salmo trutta are associated with high shear zones in stream flows, which in turn result in high turbulence. Observations were made on current speeds and turbulence intensity (TI) in a sand‐bed trout stream. Exemplary transects showed that current speeds ranged from 0 to 60 cm/s and that TI ranged from 0 to 0.7. Turbulence intensity was inversely related to current speed. Brown trout were usually found in the lower 5 cm of the stream, where shear forces result in high turbulence. Locations occupied by brown trout had lower TI than similar locations without brown trout but higher TI than is typical of an average stream.
dc.publisherWiley Periodicals, Inc.
dc.publisherTaylor & Francis Group
dc.titleDo Brown Trout Choose Locations with Reduced Turbulence?
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142211/1/tafs0610.pdf
dc.identifier.doi10.1577/T04-196.1
dc.identifier.sourceTransactions of the American Fisheries Society
dc.identifier.citedreferenceC. L. Smith, 1994. In Fish watching, Cornell University Press, Ithaca, New York.
dc.identifier.citedreferenceR. F. Raleigh, 1982. In Habitat suitability index models: brook trout, U.S. Fish and Wildlife Service FWS/OBS‐82/10.24.
dc.identifier.citedreferenceR. F. Raleigh, L. D. Zuckerman and P. C. Nelson, 1986. In Habitat suitability index models and instream flow suitability curves: brown trout, revised, U.S. Fish and Wildlife Service Biological Report 82(10.124).
dc.identifier.citedreferenceA. G. Roy, T. Buffin‐Bélanger, H. Lamarre and A. D. Kirkbride, 2004 Size, shape, and dynamics of large‐scale turbulent flow structures in a gravel‐bed river, Journal of Fluid Mechanics, 500, Pages 1 – 27.
dc.identifier.citedreferenceL. P. Sanford, 1997 Turbulent mixing in experimental ecosystem studies, Marine Biology Progress Series, 161, Pages 265 – 293.
dc.identifier.citedreferenceL. G. Shtaf, D. S. Pavlov, M. A. Skorobogativ and A. S. Baryekian, 1983 [Fish behavior as affected by the degree of flow turbulence], Voprosy Ikhtiologii, 3, Pages 307 – 317, (In Russian.).
dc.identifier.citedreferenceD. L. Smith, 2003. In The shear flow environment of juvenile salmonids, University of Idaho, Doctoral dissertation, Moscow.
dc.identifier.citedreferenceD. L. Smith, E. L. Brannon and M. Odeh, 2005 Response of juvenile rainbow trout to turbulence produced by prismatoidal shapes, Transactions of the American Fisheries Society, 134, Pages 741 – 753.
dc.identifier.citedreferenceE. M. Standen, S. G. Hinch and P. S. Rand, 2004 Influence of river speed on path selection by migrating adult sockeye salmon (Oncorhynchus nerka), Canadian Journal of Fisheries and Aquatic Sciences, 61, Pages 905 – 912.
dc.identifier.citedreferenceT. L., Wahl Analyzing ADV data using WinADV. Proceedings of the Joint Conference on Water Resources Engineering and Water Resources Planning and Management (CD‐ROM). Reston, Virginia: American Society of Civil Engineers.
dc.identifier.citedreferenceP. W. Webb, 1998 Entrainment by river chub, Nocomis micropogon, and smallmouth bass, Micropterus dolomieu, on cylinders, Journal of Experimental Biology, 201, Pages 2403 – 2412.
dc.identifier.citedreferenceP. W. Webb, 2002 Control of posture, depth, and swimming trajectories of fishes, Integrative and Comparative Biology, 42, Pages 94 – 101.
dc.identifier.citedreferenceP. W. Webb, 2004 Response latencies to postural disturbances in three species of teleostean fishes, Journal of Experimental Biology, 207, Pages 955 – 961.
dc.identifier.citedreferenceP. W. Webb, 2006, “ Stability and maneuverability ”. Edited by: R. E. Shadwick, G. V. Lauder. In Fish physiology, Elsevier, San Diego, California.
dc.identifier.citedreferenceM. J. Wiley, P. W. Seelbach, K. Wehrly and J. Martin, 2002, “ Regional ecological normalization using linear models: a meta‐method for scaling stream assessment indicators ”, Pages 202 – 223. Edited by: T. P. Simon. In Biological response signatures: indicator patterns using aquatic communities, CRC Press−Lewis Publishers, Boca Raton, Florida.
dc.identifier.citedreferenceL. R. Williams, M. L. Warren, S. B. Adams, J. L. Arvai and C. M. Taylor, 2004 Basin visual estimation technique (BVET) and representative reach approaches to wadeable stream surveys, Fisheries, 29/8, Pages 12 – 22.
dc.identifier.citedreferenceJ. Zar, 1997. In Biostatistical analysis, Prentice Hall, New York.
dc.identifier.citedreferenceT. G. Zorn, P. W. Seelbach and M. J. Wiley, 2002 Distributions of stream fishes and their relationships to stream size and hydrology in Michigan’s lower peninsula, Transactions of the American Fisheries Society, 131, Pages 70 – 85.
dc.identifier.citedreferenceD. J. Allan, 1995. In Stream ecology, Chapman and Hall, London.
dc.identifier.citedreferenceG. P. Arnold, P. W. Webb and B. H. Holford, 1991 The role of the pectoral fins in station‐holding of Atlantic salmon (Salmo salar L), Journal of Experimental Biology, 156, Pages 625 – 629.
dc.identifier.citedreferenceM. J. Atkinson, 1999, “ Topographical relief as a proxy for the friction factors of reefs: estimates of nutrient uptake into coral reef benthos ”, Pages 99 – 103. Edited by: J. E. Maragos, R. Grober‐Dunsmore. In Proceedings of the Hawaii Coral Reef Monitoring Workshop, Hawaii Division of Land and Natural Resources, Honolulu.
dc.identifier.citedreferenceM. B. Bain and N. J. Stevenson, 1999. In Aquatic habitat assessment: common methods, American Fisheries Society, Bethesda, Maryland.
dc.identifier.citedreferenceE. A. Baker and T. G. Coon, 1995. In Development and evaluation of alternative habitat suitability criteria for brook trout Salvelinus fontinalis, Michigan Department of Natural Resources, Lansing, Fisheries Research Report 2017.
dc.identifier.citedreferenceP. A. Carling, 1992 The nature of the fluid boundary and the selection of parameters for benthic ecology, Freshwater Biology, 28, Pages 273 – 282.
dc.identifier.citedreferenceA. Dolloff, J. Kershner and R. Thurow, 1996, “ Underwater observation ”, Pages 533 – 554. Edited by: B. R. Murphy, D. W. Willis. In Fisheries techniques, American Fisheries Society Bethesda, Maryland.
dc.identifier.citedreferenceL. Eidietis, T. L. Forrester and P. W. Webb, 2002 Relative abilities to correct rolling disturbances of three morphologically different fish, Canadian Journal of Zoology, 80, Pages 2156 – 2163.
dc.identifier.citedreferenceE. C. Enders, D. Boisclair and A. G. Roy, 2003 The effect of turbulence on the cost of swimming for juvenile Atlantic salmon (Salmo salar), Canadian Journal of Fisheries and Aquatic Sciences, 60, Pages 1149 – 1160.
dc.identifier.citedreferenceK. D. Fausch and R. J. White, 1981 Competition between brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) for positions in a Michigan stream, Canadian Journal of Fisheries and Aquatic Sciences, 38, Pages 1220 – 1227.
dc.identifier.citedreferenceC. J. Fulton and D. R. Bellwood, 2002 Ontogenetic habitat use in labrid fishes: an ecomorphological perspective, Marine Biology Progress Series, 236, Pages 255 – 262.
dc.identifier.citedreferenceP. Girard, D. Boisclair and M. Leclerc, 2003 The effect of cloud cover on the development of habitat quality indices for juvenile Atlantic salmon (Salmo salar), Canadian Journal of Fisheries and Aquatic Sciences, 60, Pages 386 – 1397.
dc.identifier.citedreferenceD. G. Goring and V. I. Nikora, 2002 Despiking acoustic Doppler velocimeter data, Journal of Hydraulic Engineering, 128, Pages 117 – 126.
dc.identifier.citedreferenceJ. C. Guay, D. Boisclair, M. Leclerc and M. Lapointe, 2003 Assessment of the transferability of biological habitat models for Atlantic salmon parr (Salmo salar), Canadian Journal of Fisheries and Aquatic Sciences, 60, Pages 1398 – 1408.
dc.identifier.citedreferenceC. P. Hawkins, J. L. Kershner, P. A. Bisson, M. D. Bryant, L. M. Decker, S. V. Gregory, D. A. McCullough, C. K. Overton, G. H. Reeves, R. J. Steedman and M. K. Young, 1993 A hierarchical approach to classifying stream habitat features, Fisheries, 18/6, Pages 3 – 4, 6–12.
dc.identifier.citedreferenceN. C. Kraus, A. Kohrmann and R. Caberera, 1994 New acoustic meter for measuring 3D laboratory flow, Journal of Hydraulic Engineering, 120, Pages 406 – 412.
dc.identifier.citedreferenceJ. C. Liao, D. N. Beal, G. V. Lauder and M. S. Trianyafyllou, 2003 The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street, Journal of Experimental Biology, 206, Pages 1059 – 1073.
dc.identifier.citedreferenceW. J. Matthews, 1998. In Patterns in freshwater fish ecology, Chapman and Hall, New York.
dc.identifier.citedreferenceW. J. Matthews and D. C. Heins, 1987. In Community and evolutionary ecology of North American stream fishes, University of Oklahoma Press, Norman.
dc.identifier.citedreferenceT. E. McMahon, A. V. Zale and D. J. Orth, 1996, “ Aquatic habitat measurements ”, Pages 83 – 120. Edited by: B. R. Murphy, D. W. Willis. In Fisheries techniques, American Fisheries Society, Bethesda, Maryland.
dc.identifier.citedreferenceV. I. Nikora and D. G. Goring, 1998 ADV turbulence measurements: can we improve their interpretation?, Journal of Hydraulic Engineering, 124, Pages 630 – 634.
dc.identifier.citedreferenceV. I. Nikora and D. G. Goring, 2000 Flow turbulence over fixed and weakly mobile gravel beds, Journal of Hydraulic Engineering, 126, Pages 679 – 690.
dc.identifier.citedreferenceV. I. Nikora, D. G. Goring and B. J. F. Biggs, 2002a Some observations of the effects of micro‐organisms growing on the bed of an open channel on the turbulence properties, Journal of Fluid Mechanics, 450, Pages 317 – 341.
dc.identifier.citedreferenceV. I. Nikora, M. Green, S. Thrush, T. Hume and D. G. Goring, 2002b Structure of the internal boundary layer over a patch of horse mussels (Atrina zelandica) in the estuary, Journal of Marine Research, 60, Pages 121 – 150.
dc.identifier.citedreferenceM. Odeh, J. F. Noreika, A. Haro, A. Maynard, T. Castro‐Santos and G. F. Cada, 2002. In Evaluation of the effects of turbulence on the behavior of migratory fish, Final Report to the Bonneville Power Administration, Portland, oregon, Contract 00000022, Project 200005700.
dc.identifier.citedreferenceD. S. Pavlov and S. N. Tyurukov, 1988 [The role of hydrodynamic stimuli in the behavior and orientation of fishes near obstacles], Voprosy Ikhtiologii, 28, Pages 303 – 314, (In Russian.).
dc.identifier.citedreferenceD. S. Pavlov, A. I. Lupandin and M. A. Skorobogatov, 2000 The effects of flow turbulence on the behavior and distribution of fish, Journal of Ichthyology, 40 Supplement 2, Pages S232 – S261.
dc.identifier.citedreferenceD. S. Pavlov, M. A. Skorobagatov and L. G. Shtaf, 1982 [The critical current velocity of fish and the degree of flow turbulence], Reports of the USSR Academy of Sciences, 267, Pages 1019 – 1021, (In Russian.).
dc.identifier.citedreferenceD. S. Pavlov, M. A. Skorobagatov and L. G. Shtaf, 1983 [Threshold speeds for rheoreaction of roach in flows with different degrees of turbulence], Reports of the USSR Academy of Sciences, 268, Pages 510 – 512, (In Russian.).
dc.identifier.citedreferenceK. J. Puckett and L. M. Dill, 1985 The energetics of feeding territoriality in juvenile coho salmon (Oncorhynchus kisutch), Behaviour, 92, Pages 97 – 111.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.