Show simple item record

Nightside Pi2 Wave Properties During an Extended Period With Stable Plasmapause Location and Variable Geomagnetic Activity

dc.contributor.authorHartinger, M. D.
dc.contributor.authorZou, S.
dc.contributor.authorTakahashi, K.
dc.contributor.authorShi, X.
dc.contributor.authorRedmon, R.
dc.contributor.authorGoldstein, J.
dc.contributor.authorKurth, W.
dc.contributor.authorBonnell, J. W.
dc.date.accessioned2018-02-05T16:48:54Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-12
dc.identifier.citationHartinger, M. D.; Zou, S.; Takahashi, K.; Shi, X.; Redmon, R.; Goldstein, J.; Kurth, W.; Bonnell, J. W. (2017). "Nightside Pi2 Wave Properties During an Extended Period With Stable Plasmapause Location and Variable Geomagnetic Activity." Journal of Geophysical Research: Space Physics 122(12): 12,120-12,139.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/142250
dc.description.abstractThe frequencies and amplitudes of inner magnetosphere Pi2 waves are affected by the radial plasma density profile. Variable geomagnetic activity and external driving conditions can affect both wave properties and density profiles simultaneously. When interpreting observations, this can lead to ambiguity about whether changing wave properties are due to changing external conditions, density profiles, or a combination of factors. We present a case study using multipoint ground‐based and in situ measurements to examine Pi2 wave properties during a period of variable geomagnetic activity. Multiple satellite passes demonstrate the density profile and plasmapause location are stable for at least 2 h over a wide range of magnetic local time. This stability allows us to examine how factors besides the radial density profile affect Pi2 wave properties. We find evidence for Pi2 waves with a broadband frequency spectrum as well as a discrete frequency plasmaspheric virtual resonance (PVR) that is observed at low, middle, and high latitudes and both inside and outside the plasmapause. The PVR is excited in repeated bursts before, during, and after (1) the development of a substorm, (2) several auroral intensifications, (3) the development of Subauroral Polarization Stream flows/electric fields/conductivities, and (4) variable interplanetary magnetic field conditions. Through all these changes the PVR frequency remains remarkably stable (8.2 ± 0.53 mHz, based on low‐latitude ground magnetometer observations), suggesting that these variations have little effect on the frequency. This is consistent with PVR model predictions for a stationary plasmapause.Key PointsPlasmapause location is stable before, during, and after this substorm over wide range of MLTThere are multiple intensifications of a plasmaspheric virtual resonance (PVR) with spatially varying amplitudePVR wave frequency remains stable at 8.2 ± 0.53 mHz during 2 h period despite changing magnetospheric and ionospheric conditions
dc.publisherPublished by the American Geophysical Union as part of the Geophysical Monograph Series
dc.publisherWiley Periodicals, Inc.
dc.subject.othersubstorm
dc.subject.otherplasmapause
dc.subject.otherplasmasphere
dc.subject.otherULF wave
dc.subject.otherPi2
dc.subject.othervirtual resonance
dc.titleNightside Pi2 Wave Properties During an Extended Period With Stable Plasmapause Location and Variable Geomagnetic Activity
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142250/1/jgra53953_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142250/2/jgra53953.pdf
dc.identifier.doi10.1002/2017JA024708
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRodriguez, J. V. ( 2014 ). GOES 13–15 MAGE/PD pitch angles algorithm theoretical basis document, version 1.0. Boulder, CO: NOAA National Geophysical Data Center. Retrieved from http://www.ngdc.noaa.gov/stp/satellite/goes/documentation.html
dc.identifier.citedreferenceMauk, B. H. N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy, A. ( 2012 ). Science objectives and rationale for the Radiation Belt Storm Probes Mission. Space Science Reviews, 179, 3 – 27. https://doi.org/10.1007/s11214-012-9908-y
dc.identifier.citedreferenceMcFadden, J. P., Carlson, C. W., Larson, D., Ludlam, M., Abiad, R., Elliott, B.,… Angelopoulos, V. ( 2008 ). The THEMIS ESA plasma instrument and in‐flight calibration. Space Science Reviews, 141, 277 – 302.
dc.identifier.citedreferenceMende, S. B., Harris, S. E., Frey, H. U., Angelopoulos, V., Russell, C. T., Donovan, E.,… Peticolas, L. M. ( 2008 ). The THEMIS array of ground‐based observatories for the study of auroral substorms. Space Science Reviews, 141, 357 – 387. https://doi.org/10.1007/s11214-008-9380-x
dc.identifier.citedreferenceMurakami, G., Hirai, M., & Yoshikawa, I. ( 2007 ). The plasmapause response to the southward turning of the IMF derived from sequential EUV images. Journal of Geophysical Research, 112, A06217. https://doi.org/10.1029/ 2006JA012174
dc.identifier.citedreferenceNishimura, Y., Lyons, L. R., Kikuchi, T., Angelopoulos, V., Donovan, E., Mende, S.,… Nagatsuma, T. ( 2012 ). Formation of substorm Pi2: A coherent response to auroral streamers and currents. Journal of Geophysical Research, 117, A09218. https://doi.org/10.1029/2012JA017889
dc.identifier.citedreferenceNosé, M., Liou, K., & Sutcliffe, P. R. ( 2008 ). Longitudinal dependence of characteristics of low‐latitude Pi2 pulsations observed at Kakioka and Hermanus. Earth Planets, and Space, 58, 775 – 783.
dc.identifier.citedreferenceNosé, M. ( 2010 ). Excitation mechanism of low‐latitude Pi2 pulsations: Cavity mode resonance or BBF‐driven process? Journal of Geophysical Research, 115, A07221. https://doi.org/10.1029/2009JA015205
dc.identifier.citedreferenceOnsager, T., Grubb, R., Kunches, J., Matheson, L., Speich, D., Zwickl, R. W., & Sauer, H. ( 1996 ). Operational uses of the GOES energetic particle detectors. In Washwell, E. R. (Ed.), Society of Photo‐Optical Instrumentation Engineers (SPIE) Conference Series (Vol.  2812, pp. 281 – 290 ). Bellingham, WA: Society of Photo-Optical Instrumentation Engineers.
dc.identifier.citedreferenceOsaki, H., Takahashi, K., Fukunishi, H., Nagatsuma, T., Oya, H., Matsuoka, A., & Milling, D. K. ( 1998 ). Pi2 pulsations observed from the Akebono satellite in the plasmasphere. Journal of Geophysical Research, 103, 17,605 – 17,616.
dc.identifier.citedreferenceReam, J. B., Walker, R. J., Ashour‐Abdalla, M., El‐Alaoui, M., Wiltberger, M., Kivelson, M. G., & Goldstein, M. L. ( 2015 ). Propagation of Pi2 pulsations through the braking region in global MHD simulations. Journal of Geophysical Research: Space Physics, 120, 10,574 – 10,591. https://doi.org/10.1002/2015JA021572
dc.identifier.citedreferenceRedmon, R. J., Rodriguez, J. V., Green, J. C., Ober, D., Wilson, G., Knipp, D.,… McGuire, R. ( 2015 ). Improved polar and geosynchronous satellite data sets available in common data format at the coordinated data analysis web. Space Weather, 13, 254 – 256. https://doi.org/10.1002/2015SW001176
dc.identifier.citedreferenceRuohoniemi, J. M., & Baker, K. B. ( 1998 ). Large‐scale imaging of high‐latitude convection with super dual auroral radar network HF radar observations. Journal of Geophysical Research, 103, 20,797 – 20,811.
dc.identifier.citedreferenceRussell, C. T., Chi, P. J., Dearborn, D. J., Ge, Y. S., Kuo‐Tiong, B., Means, J. D.,… Snare, R. C. ( 2008 ). THEMIS ground‐based magnetometers. Space Science Reviews, 141, 389 – 412. https://doi.org/10.1007/s11214-008-9337-0
dc.identifier.citedreferenceShi, X., Baker, J. B. H., Ruohoniemi, J. M., Hartinger, M. D., Frissell, N. A., & Liu, J. ( 2017 ). Simultaneous space and ground‐based observations of a plasmaspheric virtual resonance. Journal of Geophysical Research: Space Physics, 122, 4190 – 4209. https://doi.org/10.1002/2016JA023583
dc.identifier.citedreferenceSibeck, D. G., & Angelopoulos, V. ( 2008 ). THEMIS science objectives and mission phases. Space Science Reviews, 141, 35 – 59.
dc.identifier.citedreferenceSinger, H., Matheson, L., Grubb, R., Newman, A., & Bouwer, D. ( 1996 ). Monitoring space weather with the GOES magnetometers. In Washwell, E. R. (Ed.), Society of Photo‐Optical Instrumentation Engineers (SPIE) Conference Series (Vol.  2812, pp. 299 – 308 ). Bellingham, WA: Society of Photo‐Optical Instrumentation Engineers.
dc.identifier.citedreferenceTakahashi, K., Lee, D.‐H., Nosé, M., Anderson, R. R., & Hughes, W. J. ( 2003 ). CRRES electric field study of the radial mode structure of Pi2 pulsations. Journal of Geophysical Research, 108 ( A5 ), 1210. https://doi.org/10.1029/2002JA009761
dc.identifier.citedreferenceTakahashi, K., Liou, K., Yumoto, K., Kitamura, K., Nosé, M., & Honary, F. ( 2005 ). Source of Pc4 pulsations observed on the nightside. Journal of Geophysical Research, 110, A12207. https://doi.org/10.1029/2005JA011093
dc.identifier.citedreferenceTakahashi, K., Berube, D., Lee, D.‐H., Goldstein, J., Singer, H. J., Honary, F., & Moldwin, M. B. ( 2009 ). Possible evidence of virtual resonance in the dayside magnetosphere. Journal of Geophysical Research, 114, A05206. https://doi.org/10.1029/2008JA013898
dc.identifier.citedreferenceTakahashi, K., Bonnell, J., Glassmeier, K.‐H., Angelopoulos, V., Singer, H. J., Chi, P. J.,… Liu, W. ( 2010 ). Multipoint observation of fast mode waves trapped in the dayside plasmasphere. Journal of Geophysical Research, 115, A12247. https://doi.org/10.1029/2010JA015956
dc.identifier.citedreferenceTeramoto, M., Takahashi, K., Nosé, M., Lee, D.‐H., & Sutcliffe, P. R. ( 2011 ). Pi2 pulsations in the inner magnetosphere simultaneously observed by the active magnetospheric particle tracer explorers/charge composition explorer and dynamics explorer 1 satellites. Journal of Geophysical Research, 116, A07225. https://doi.org/10.1029/2010JA016199
dc.identifier.citedreferenceTsyganenko, N. A. ( 1989 ). A magnetospheric magnetic field model with a warped tail current sheet. Planetary and Space Science, 37, 5 – 20.
dc.identifier.citedreferenceWorthington, E. W., Sauter, E. A., & Love, J. J. ( 2009 ). Analysis of USGS one‐second data. In Love, J. J. (Ed.), Proc. XIII IAGA Workshop (pp. 262 – 266 ). Golden, CO: United States Geological Survey.
dc.identifier.citedreferenceWygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S., Bale, S. D.,… Tao, J. B. ( 2013 ). The electric field and waves instruments on the Radiation Belt Storm Probes mission. Space Science Reviews, 179, 183 – 220. https://doi.org/10.1007/s11214-013-0013-7
dc.identifier.citedreferenceZou, S., Lyons, L. R., Wang, C.‐P., Boudouridis, A., Ruohoniemi, J. M., Anderson, P. C.,… Devlin, J. C. ( 2009 ). On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP and IMAGE observations. Journal of Geophysical Research, 114, A01205. https://doi.org/10.1029/2008JA013449
dc.identifier.citedreferenceZou, S., Lyons, L. R., Nicolls, M. J., Heinselman, C. J., & Mende, S. B. ( 2009 ). Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations. Journal of Geophysical Research, 114, A12301. https://doi.org/10.1029/2009JA014259
dc.identifier.citedreferenceZou, S., Lyons, L., & Nishimura, Y. ( 2012 ). Mutual evolution of aurora and ionospheric electrodynamic features near the harang reversal during substorms. In Keiling, A., et al. (Eds.), Auroral phenomenology and magnetospheric processes: Earth and other planets. Washington DC: American Geophysical Union. https://doi.org/10.1029/2011GM001163
dc.identifier.citedreferenceAnderson, P. C., Hanson, W. B., Heelis, R. A., Craven, J. D., Baker, D. N., & Frank, L. A. ( 1993 ). A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution. Journal of Geophysical Research, 98, 6069 – 6078.
dc.identifier.citedreferenceArcher, M. O., Hartinger, M. D., Walsh, B. M., & Plaschke, F. ( 2015 ). Frequency variability of standing Alfvén waves excited by fast mode resonances in the outer magnetosphere. Geophysical Research Letters, 42, 10,150 – 10,159, https://doi.org/10.1002/2015GL066683
dc.identifier.citedreferenceArcher, M. O., Hartinger, M. D., Walsh, B. M., & Angelopoulos, V. ( 2017 ). Magnetospheric and solar wind dependences of coupled fast‐mode resonances outside the plasmasphere. Journal of Geophysical Research: Space Physics, 122, 212 – 226. https://doi.org/10.1002/2016JA023428
dc.identifier.citedreferenceClaudepierre, S. G., Toffoletto, F. R., & Wiltberger, M. ( 2016 ). Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere. Journal of Geophysical Research: Space Physics, 121, 227 – 244. https://doi.org/10.1002/2015JA022048
dc.identifier.citedreferenceChen, L., & Hasegawa, A. ( 1974 ). A theory of long‐period magnetic pulsations: 2. Impulse excitation of surface eigenmode. Journal of Geophysical Research, 79, 1033 – 1037.
dc.identifier.citedreferenceFoster, J. C., & Vo, H. B. ( 2002 ). Average characteristics and activity dependence of the subauroral polarization stream. Journal of Geophysical Research, 107 ( A12 ), 1475. https://doi.org/10.1029/2002JA009409
dc.identifier.citedreferenceFujita, S., & Tanaka, T. ( 2013 ). Possible generation mechanisms of the Pi2 pulsations estimated from a global MHD simulation. Earth, Planets and Space, 65, 7.
dc.identifier.citedreferenceGhamry, E., Kim, K.‐H., Kwon, H.‐J., Lee, D.‐H., Park, J.‐S., Choi, J.,… Huang, J. ( 2015 ). Simultaneous Pi2 observations by the Van Allen Probes inside and outside the plasmasphere. Journal of Geophysical Research: Space Physics, 120, 4567 – 4575. https://doi.org/10.1002/2015JA021095
dc.identifier.citedreferenceGoldstein, J., Burch, J. L., Sandel, B. R., Mende, S. B., C:Son Brandt, P., & Hairston, M. R. ( 2005 ). Coupled response of the inner magnetosphere and ionosphere on 17 April 2002. Journal of Geophysical Research, 110, A03205. https://doi.org/10.1029/2004JA010712
dc.identifier.citedreferenceGoldstein, J., De Pascuale, S., Kletzing, C., Kurth, W., Genestreti, K. J., Skoug, R. M.,… Spence, H. ( 2014 ). Simulation of Van Allen Probes plasmapause encounters. Journal of Geophysical Research: Space Physics, 119, 7464 – 7484. https://doi.org/10.1002/2014JA020252
dc.identifier.citedreferenceHartinger, M., Moldwin, M. B., Angelopoulos, V., Takahashi, K., Singer, H. J., Anderson, R. R.,… Wygant, J. R. ( 2010 ). Pc5 wave power in the quiet‐time plasmasphere and trough: CRRES observations. Geophysical Research Letters, 37, L07107. https://doi.org/10.1029/2010GL042475
dc.identifier.citedreferenceJacobs, J. A., Kato, Y., Matsushita, S., & Troitskaya, V. A. ( 1964 ). Classification of geomagnetic micropulsations. Journal of Geophysical Research, 69, 180 – 181.
dc.identifier.citedreferenceKeiling, A., & Takahashi, K. ( 2011 ). Review of Pi2 models. Space Science Reviews, 161, 63 – 148.
dc.identifier.citedreferenceKepko, L., Kivelson, M. G., & Yumoto, K. ( 2001 ). Flow bursts, braking, and Pi2 pulsations. Journal of Geophysical Research, 106, 1903 – 1916.
dc.identifier.citedreferenceKivelson, M. G., Etcheto, J., & Trotignon, J. G. ( 1984 ). Global compressional oscillations of the terrestrial magnetosphere ‐ The evidence and a model. Journal of Geophysical Research, 89, 9851 – 9856.
dc.identifier.citedreferenceKletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T.,… Tyler, J. ( 2013 ). The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space Science Reviews, 179, 127 – 181.
dc.identifier.citedreferenceKwon, H.‐J., Kim, K.‐H., Jee, G., Park, J.‐S., Jin, H., & Nishimura, Y. ( 2015 ). Plasmapause location under quiet geomagnetic conditions ( K p ≤1): THEMIS observations. Geophysical Research Letters, 42, 7303 – 7310. https://doi.org/10.1002/2015GL066090
dc.identifier.citedreferenceKurth, W. S., De Pascuale, S., Faden, J. B., Kletzing, C. A., Hospodarsky, G. B., Thaller, S., & Wygant, J. R. ( 2015 ). Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes. Journal of Geophysical Research: Space Physics, 120, 904 – 914. https://doi.org/10.1002/2014JA020857
dc.identifier.citedreferenceLaakso, H., & Pedersen, A. ( 1998 ). Ambient electron density derived from differential potential measurements. In Pfaff, R. F., Borovsky, J. E., & Young, D. T. (Eds.), Measurement techniques in space plasmas: Particles (Vol.  102, 49 pp.). Washington, DC: Published by the American Geophysical Union as part of the Geophysical Monograph Series.
dc.identifier.citedreferenceLee, D. H., & Kim, K. ( 1999 ). Compressional MHD waves in the magnetosphere: A new approach. Journal of Geophysical Research, 104, 12,379 – 12,386.
dc.identifier.citedreferenceLi, Y., Fraser, B. J., Menk, F. W., Webster, D. J., & Yumoto, K. ( 1998 ). Properties and sources of low and very low latitude Pi2 pulsations. Journal of Geophysical Research, 103, 2343 – 2358.
dc.identifier.citedreferenceLuo, H., Chen, G., Du, A., Angelopoulos, V., Xu, W., Zhao, X., & Wang, Y. ( 2011 ). THEMIS multipoint observations of Pi2 pulsations inside and outside the plasmasphere. Journal of Geophysical Research, 116, A12206. https://doi.org/10.1029/2011JA016746
dc.identifier.citedreferenceLove, J. J., & Finn, C. A. ( 2011 ). The USGS geomagnetism program and its role in space weather monitoring. Space Weather, 9, S07001. https://doi.org/10.1029/2011SW000684
dc.identifier.citedreferenceLysak, R. L., Song, Y., Sciffer, M. D., & Waters, C. L. ( 2015 ). Propagation of Pi2 pulsations in a dipole model of the magnetosphere. Journal of Geophysical Research: Space Physics, 120, 355 – 367. https://doi.org/10.1002/2014JA020625
dc.identifier.citedreferenceMann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, A., Kale, Z. C.,… Singer, H. J. ( 2008 ). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141, 413 – 451.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.