Show simple item record

Stromal‐Derived Factor‐1α (CXCL12) Levels Increase in Periodontal Disease

dc.contributor.authorHavens, Aaron M.
dc.contributor.authorChiu, Evonne
dc.contributor.authorTaba, Mario
dc.contributor.authorWang, Jincheng
dc.contributor.authorShiozawa, Yusuke
dc.contributor.authorJung, Younghun
dc.contributor.authorTaichman, L. Susan
dc.contributor.authorD’Silva, Nisha J.
dc.contributor.authorGopalakrishnan, R.
dc.contributor.authorWang, CunYu
dc.contributor.authorGiannobile, William V.
dc.contributor.authorTaichman, Russell S.
dc.date.accessioned2018-02-05T16:49:43Z
dc.date.available2018-02-05T16:49:43Z
dc.date.issued2008-05
dc.identifier.citationHavens, Aaron M.; Chiu, Evonne; Taba, Mario; Wang, Jincheng; Shiozawa, Yusuke; Jung, Younghun; Taichman, L. Susan; D’Silva, Nisha J.; Gopalakrishnan, R.; Wang, CunYu; Giannobile, William V.; Taichman, Russell S. (2008). "Stromal‐Derived Factor‐1α (CXCL12) Levels Increase in Periodontal Disease." Journal of Periodontology 79(5): 845-853.
dc.identifier.issn0022-3492
dc.identifier.issn1943-3670
dc.identifier.urihttps://hdl.handle.net/2027.42/142300
dc.publisherAmerican Academy of Periodontology
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCXCL12
dc.subject.otherCXCR4
dc.subject.otherinflammation
dc.subject.otherperiodontitis
dc.subject.otherSDF‐1α
dc.subject.otherChemokine
dc.titleStromal‐Derived Factor‐1α (CXCL12) Levels Increase in Periodontal Disease
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Biomedical Engineering, College of Engineering, University of Michigan.
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, University of Michigan Dental School, Ann Arbor, MI.
dc.contributor.affiliationumDepartment of Pathology, University of Michigan Medical School, Ann Arbor, MI.
dc.contributor.affiliationotherMichigan Center for Oral Health Research, Ann Arbor, MI.
dc.contributor.affiliationotherHarvard School of Dental Medicine, Boston, MA.
dc.contributor.affiliationotherPrivate practice, Los Angeles, CA.
dc.contributor.affiliationotherDepartment of Bucco Maxillo Facial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
dc.contributor.affiliationotherDepartment of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN.
dc.contributor.affiliationotherDivision of Oral Biology and Medicine, University of California, Los Angeles Dentistry, Los Angeles, CA.
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142300/1/jper0845.pdf
dc.identifier.doi10.1902/jop.2008.070514
dc.identifier.sourceJournal of Periodontology
dc.identifier.citedreferenceKim HK, Kim JE, Chung J, Han KS, Cho HI. Surface expression of neutrophil CXCR4 is down‐modulated by bacterial endotoxin. Int J Hematol 2007; 85: 390 – 396.
dc.identifier.citedreferenceKornman KS, Page RC, Tonetti MS. The host response to the microbial challenge in periodontitis: Assembling the players. Periodontol 2000 1997; 14: 33 – 53.
dc.identifier.citedreferenceKinney JS, Ramseier CA, Giannobile WV. Oral fluid‐based biomarkers of alveolar bone loss in periodontitis. Ann N Y Acad Sci 2007; 1098: 230 – 251.
dc.identifier.citedreferenceNagasawa T, Nakajima T, Tachibana K, et al. Molecular cloning and characterization of a murine pre‐B‐cell growth‐stimulating factor/stromal cell‐derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc Natl Acad Sci USA 1996; 93: 14726 – 14729.
dc.identifier.citedreferenceMcGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J. Embryonic expression and function of the chemokine SDF‐1 and its receptor, CXCR4. Dev Biol 1999; 213: 442 – 456.
dc.identifier.citedreferenceImai K, Kobayashi M, Wang J, et al. Selective transendothelial migration of hematopoietic progenitor cells: A role in homing of progenitor cells. Blood 1999; 93: 149 – 156.
dc.identifier.citedreferenceImai K, Kobayashi M, Wang J, et al. Selective secretion of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells: A possible role in homing of haemopoietic progenitor cells to bone marrow. Br J Haematol 1999; 106: 905 – 911.
dc.identifier.citedreferenceGerard C, Rollins BJ. Chemokines and disease. Nat Immunol 2001; 2: 108 – 115.
dc.identifier.citedreferenceRossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol 2000; 18: 217 – 242.
dc.identifier.citedreferenceRottman JB. Key role of chemokines and chemokine receptors in inflammation, immunity, neoplasia, and infectious disease. Vet Pathol 1999; 36: 357 – 367.
dc.identifier.citedreferencePark CH, Abramson ZR, Taba M Jr., et al. Three‐dimensional micro‐computed tomographic imaging of alveolar bone in experimental bone loss or repair. J Periodontol 2007; 78: 273 – 281.
dc.identifier.citedreferenceKantarci A, Van Dyke TE. Neutrophil‐mediated host response to Porphyromonas gingivalis. J Int Acad Periodontol 2002; 4: 119 – 125.
dc.identifier.citedreferenceDarveau RP, Hancock RE. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol 1983; 155: 831 – 838.
dc.identifier.citedreferencePage RC, Schroeder HE. Pathogenesis of inflammatory periodontal disease. A summary of current work. Lab Invest 1976; 34: 235 – 249.
dc.identifier.citedreferenceTiainen L, Asikainen S, Saxen L. Puberty‐associated gingivitis. Community Dent Oral Epidemiol 1992; 20: 87 – 89.
dc.identifier.citedreferenceZadeh HH, Nichols FC, Miyasaki KT. The role of the cell‐mediated immune response to Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in periodontitis. Periodontol 2000 1999; 20: 239 – 288.
dc.identifier.citedreferenceDai J, Kitagawa Y, Zhang J, et al. Vascular endothelial growth factor contributes to the prostate cancer‐induced osteoblast differentiation mediated by bone morphogenetic protein. Cancer Res 2004; 64: 994 – 999.
dc.identifier.citedreferenceBautz F, Rafii S, Kanz L, Mohle R. Expression and secretion of vascular endothelial growth factor‐A by cytokine‐stimulated hematopoietic progenitor cells. Possible role in the hematopoietic microenvironment. Exp Hematol 2000; 28: 700 – 706.
dc.identifier.citedreferenceKijowski J, Baj‐Krzyworzeka M, Majka M, et al. The SDF‐1‐CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 2001; 19: 453 – 466.
dc.identifier.citedreferenceLenoir M, Djerdjouri B, Perianin A. Stroma cell‐derived factor 1α mediates desensitization of human neutrophil respiratory burst in synovial fluid from rheumatoid arthritic patients. J Immunol 2004; 172: 7136 – 7143.
dc.identifier.citedreferenceLink DC. Neutrophil homeostasis: A new role for stromal cell‐derived factor‐1. Immunol Res 2005; 32: 169 – 178.
dc.identifier.citedreferencePelus LM, Bian H, Fukuda S, et al. The CXCR4 agonist peptide, CTCE‐0021, rapidly mobilizes polymorphonuclear neutrophils and hematopoietic progenitor cells into peripheral blood and synergizes with granulocyte colony‐stimulating factor. Exp Hematol 2005; 33: 295 – 307.
dc.identifier.citedreferencePetit I, Szyper‐Kravitz M, Nagler A, et al. G‐CSF induces stem cell mobilization by decreasing bone marrow SDF‐1 and up‐regulating CXCR4. Nat Immunol 2002; 3: 687 – 694.
dc.identifier.citedreferenceFedyk ER, Jones D, Critchley HO, et al. Expression of stromal‐derived factor‐1 is decreased by IL‐1 and TNF and in dermal wound healing. J Immunol 2001; 166: 5749 – 5754.
dc.identifier.citedreferenceHosokawa Y, Hosokawa I, Ozaki K, et al. CXCL12 and CXCR4 expression by human gingival fibroblasts in periodontal disease. Clin Exp Immunol 2005; 141: 467 – 474.
dc.identifier.citedreferenceAust G, Steinert M, Kiessling S, Kamprad M, Simchen C. Reduced expression of stromal‐derived factor 1 in autonomous thyroid adenomas and its regulation in thyroid‐derived cells. J Clin Endocrinol Metab 2001; 86: 3368 – 3376.
dc.identifier.citedreferenceYun HJ, Jo DY. Production of stromal cell‐derived factor‐1 (SDF‐1) and expression of CXCR4 in human bone marrow endothelial cells. J Korean Med Sci 2003; 18: 679 – 685.
dc.identifier.citedreferenceSalvucci O, Yao L, Villalba S, et al. Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal‐derived factor‐1. Blood 2002; 99: 2703 – 2711.
dc.identifier.citedreferenceCooke JW, Sarment DP, Whitesman LA, et al. Effect of rhPDGF‐BB delivery on mediators of periodontal wound repair. Tissue Eng 2006; 12: 1441 – 1450.
dc.identifier.citedreferenceWright N, de Lera TL, Garcia‐Moruja C, et al. Transforming growth factor‐beta1 down‐regulates expression of chemokine stromal cell‐derived factor‐1: Functional consequences in cell migration and adhesion. Blood 2003; 102: 1978 – 1984.
dc.identifier.citedreferenceCaux C, Ait‐Yahia S, Chemin K, et al. Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol 2000; 22: 345 – 369.
dc.identifier.citedreferenceSmith JM, Johanesen PA, Wendt MK, Binion DG, Dwinell MB. CXCL12 activation of CXCR4 regulates mucosal host defense through stimulation of epithelial cell migration and promotion of intestinal barrier integrity. Am J Physiol Gastrointest Liver Physiol 2005; 288: G316 – G326.
dc.identifier.citedreferenceAkimoto M, Hashimoto H, Maeda A, Shigemoto M, Yamashita K. Roles of angiogenic factors and endothelin‐1 in gastric ulcer healing. Clin Sci 2002; 103 ( Suppl. 48 ): 450S – 454S.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.