Show simple item record

Mercury’s Solar Wind Interaction as Characterized by Magnetospheric Plasma Mantle Observations With MESSENGER

dc.contributor.authorJasinski, Jamie M.
dc.contributor.authorSlavin, James A.
dc.contributor.authorRaines, Jim M.
dc.contributor.authorDiBraccio, Gina A.
dc.date.accessioned2018-02-05T16:50:10Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-12
dc.identifier.citationJasinski, Jamie M.; Slavin, James A.; Raines, Jim M.; DiBraccio, Gina A. (2017). "Mercury’s Solar Wind Interaction as Characterized by Magnetospheric Plasma Mantle Observations With MESSENGER." Journal of Geophysical Research: Space Physics 122(12): 12,153-12,169.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/142326
dc.description.abstractWe analyze 94 traversals of Mercury’s southern magnetospheric plasma mantle using data from the MESSENGER spacecraft. The mean and median proton number densities in the mantle are 1.5 and 1.3 cm−3, respectively. For sodium number density these values are 0.004 and 0.002 cm−3. Moderately higher densities are observed on the magnetospheric dusk side. The mantle supplies up to 1.5 × 108 cm−2 s−1 and 0.8 × 108 cm−2 s−1 of proton and sodium flux to the plasma sheet, respectively. We estimate the cross‐electric magnetospheric potential from each observation and find a mean of ~19 kV (standard deviation of 16 kV) and a median of ~13 kV. This is an important result as it is lower than previous estimations and shows that Mercury’s magnetosphere is at times not as highly driven by the solar wind as previously thought. Our values are comparable to the estimations for the ice giant planets, Uranus and Neptune, but lower than Earth. The estimated potentials do have a very large range of values (1–74 kV), showing that Mercury’s magnetosphere is highly dynamic. A correlation of the potential is found to the interplanetary magnetic field (IMF) magnitude, supporting evidence that dayside magnetic reconnection can occur at all shear angles at Mercury. But we also see that Mercury has an Earth‐like magnetospheric response, favoring −BZ IMF orientation. We find evidence that −BX orientations in the IMF favor the southern cusp and southern mantle. This is in agreement with telescopic observations of exospheric emission, but in disagreement with modeling.Key PointsProton and sodium ions in Mercury’s southern plasma mantle have mean number densities of ~1.5 and 0.004 cm−3, respectivelyThe highest estimates of mantle proton and sodium flux supply to the plasma sheet are 1.5 × 108 cm−2 s−1 and 0.8 × 108 cm−2 s−1, respectivelyAn average cross‐electric magnetospheric potential of ~19 kV is determined, which is enhanced for increased IMF strength and −BZ
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMercury
dc.subject.othersolar wind
dc.subject.othermagnetosphere
dc.subject.othermantle
dc.subject.otherplasma
dc.subject.otherMESSENGER
dc.titleMercury’s Solar Wind Interaction as Characterized by Magnetospheric Plasma Mantle Observations With MESSENGER
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142326/1/jgra53846.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142326/2/jgra53846_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142326/3/jgra53846-sup-0001-data_si.pdf
dc.identifier.doi10.1002/2017JA024594
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSckopke N., Grunwaldt, H., Montgomery, M. D., Paschmannan, G., & Rosenbauer, H. ( 1973 ). Observations of proton flow inside the high latitude magnetopause with the MPI plasma experiment on Heos 2. Paper presented at Chapman Memorial Symposium on Magnetospheric Motions, AGU, Boulder, CO. 18–22 June.
dc.identifier.citedreferenceRosenbauer, H., Grünwaldt, H., Montgomery, M. D., Paschmann, G., & Sckopke, N. ( 1975 ). Heos 2 plasma observations in the distant polar magnetosphere: The plasma mantle. Journal of Geophysical Research, 80, 2723 – 2737. https://doi.org/10.1029/JA080i019p02723
dc.identifier.citedreferenceRussell, C. T., & Elphic, R. C. ( 1978 ). Initial ISEE magnetometer results—Magnetopause observations. Space Science Reviews, 22, 681 – 715. https://doi.org/10.1007/BF00212619
dc.identifier.citedreferenceRussell, C. T., & Elphic, R. C. ( 1979 ). ISEE observations of flux transfer events at the dayside magnetopause. Geophysical Research Letters, 6, 33 – 36. https://doi.org/10.1029/GL006i001p00033
dc.identifier.citedreferenceSanchez, E. R., & Siscoe, G. L. ( 1990 ). IMP 8 magnetotail boundary crossings: A test of the MHD models for an open magnetosphere. Journal of Geophysical Research, 95, 20,771 – 20,779. https://doi.org/10.1029/JA095iA12p20771
dc.identifier.citedreferenceSarantos, M., Reiff, P. H., Hill, T. W., Killen, R. M., & Urquhart, A. L. ( 2001 ). A Bx‐interconnected magnetosphere model for Mercury. Planetary and Space Science, 49 ( 14–15 ), 1629 – 1635. https://doi.org/10.1016/S0032‐0633(01)00100‐3
dc.identifier.citedreferenceSckopke, N., & Paschmann, G. ( 1978 ). The plasma mantle. A survey of magnetotail boundary layer observations. Journal of Atmospheric and Terrestrial Physics, 40 ( 3 ), 261 – 278. https://doi.org/10.1016/0021‐9169(78)90044‐2
dc.identifier.citedreferenceSckopke, N., Paschmann, G., Rosenbauer, H., & Fairfield, D. H. ( 1976 ). Influence of the interplanetary magnetic field on the occurrence and thickness of the plasma mantle. Journal of Geophysical Research, 81, 2687 – 2691. https://doi.org/10.1029/JA081i016p02687
dc.identifier.citedreferenceShue, J.‐H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., & Singer, H. J. ( 1997 ). A new functional form to study the solar wind control of the magnetopause size and shape. Journal of Geophysical Research, 102, 9497 – 9511. https://doi.org/10.1029/97JA00196
dc.identifier.citedreferenceSiscoe, G. L., Crooker, N. U., & Siebert, K. D. ( 2002 ). Transpolar potential saturation: Roles of region 1 current system and solar wind ram pressure. Journal of Geophysical Research, 107 ( A10 ), 1321. https://doi.org/10.1029/2001JA009176
dc.identifier.citedreferenceSiscoe, G. L., Erickson, G. M., Sonnerup, B. U. Ö., Maynard, N. C., Schoendorf, J. A., Siebert, K. D., … Wilson, G. R. ( 2002 ). Hill model of transpolar potential saturation: Comparisons with MHD simulations. Journal of Geophysical Research, 107 ( A6 ), 1075. https://doi.org/10.1029/2001JA000109
dc.identifier.citedreferenceSiscoe, G. L., & Sanchez, E. ( 1987 ). An MHD model for the complete open magnetotail boundary. Journal of Geophysical Research, 92, 7405 – 7412. https://doi.org/10.1029/JA092iA07p07405
dc.identifier.citedreferenceSlavin, J. A. ( 2004 ). Mercury’s magnetosphere. Advances in Space Research, 33 ( 11 ), 1859 – 1874. https://doi.org/10.1016/j.asr.2003.02.019
dc.identifier.citedreferenceSlavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., … Zurbuchen, T. H. ( 2009 ). MESSENGER observations of magnetic reconnection in Mercury’s magnet osphere. Science, 324, 606 – 610. https://doi.org/10.1126/Science.1172011
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., … Zurbuchen, T. H. ( 2010 ). MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329, 665 – 668. https://doi.org/10.1126/Science.1188067
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., … Solomon, S. C. ( 2014 ). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119. 8087 – 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceSlavin, J. A., Imber, S. M., Boardsen, S. A., DiBraccio, G. A., Sundberg, T., Sarantos, M., … Solomon, S. C. ( 2012 ). MESSENGER observations of a flux‐transfer‐event shower at Mercury. Journal of Geophysical Research, 117, A00M06. https://doi.org/10.1029/2012JA017926
dc.identifier.citedreferenceSlavin, J. A., Smith, E. J., Sibeck, D. G., Baker, D. N., Zwickl, R. D., & Akasofu, S.‐I. ( 1985 ). An ISEE 3 study of average and substorm conditions in the distant magnetotail. Journal of Geophysical Research, 90, 10,875 – 10,895. https://doi.org/10.1029/JA090iA11p10875
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Slavin, J. A., Raines, J. M., Zong, Q. G., Poh, G. K., & Zurbuchen, T. H. ( 2016 ). Spatial distribution of Mercury’s flux ropes and reconnection fronts: MESSENGER observations. Journal of Geophysical Research: Space Physics, 121, 7590 – 7607. https://doi.org/10.1002/2016JA022787
dc.identifier.citedreferenceSun, W.‐J., Slavin, J. A., Fu, S., Raines, J. M., Zong, Q.‐G., Imber, S. M., & Baker, D. N. ( 2015 ). MESSENGER observations of magnetospheric substorm activity in Mercury’s near magnetotail. Geophysical Research Letters, 42, 3692 – 3699. https://doi.org/10.1002/2015GL064052
dc.identifier.citedreferenceSundberg, T., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Ho, G. C., … Solomon, S. C. ( 2012 ). MESSENGER observations of dipolarization events in Mercury’s magnetotail. Journal of Geophysical Research, 117, A00M03. https://doi.org/10.1029/2012JA017756
dc.identifier.citedreferenceSwisdak, M., Rogers, B. N., Drake, J. F., & Shay, M. A. ( 2003 ). Diamagnetic suppression of component magnetic reconnection at the magnetopause. Journal of Geophysical Research, 108 ( A5 ), 1218. https://doi.org/10.1029/2002JA009726
dc.identifier.citedreferenceTanskanen, E. I. ( 2009 ). A comprehensive high‐throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined. Journal of Geophysical Research, 114, A05204. https://doi.org/10.1029/2008JA013682
dc.identifier.citedreferenceWinslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., … Solomon, S. C. ( 2013 ). Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations. Journal of Geophysical Research: Space Physics, 118, 2213 – 2227. https://doi.org/10.1002/jgra.50237
dc.identifier.citedreferenceAnderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The magnetometer instrument on MESSENGER. Space Science Reviews, 131, 417. https://doi.org/10.1007/s11214‐007‐9246‐7
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., … Zurbuchen, T. H. ( 2011 ). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 1859 – 1862. https://doi.org/10.1126/science.1211001
dc.identifier.citedreferenceAndrews, G., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., … Raines, J. M. ( 2007 ). The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft. Space Science Reviews, 131, 523. https://doi.org/10.1007/s11214‐007‐9272‐5
dc.identifier.citedreferenceBoardsen, S. A., Sundberg, T., Slavin, J. A., Anderson, B. J., Korth, H., Solomon, S. C., & Blomberg, L. G. ( 2010 ). Observations of Kelvin‐Helmholtz waves along the dusk‐side boundary of Mercury’s magnetosphere during MESSENGER’s third flyby. Geophysical Research Letters, 37, L12101. https://doi.org/10.1029/2010GL043606
dc.identifier.citedreferenceBurton, R. K., McPherron, R. L., & Russell, C. T. ( 1975 ). The terrestrial magnetosphere—A half‐wave rectifier of the interplanetary electric field. Science, 189, 717. https://doi.org/10.1126/science.189.4204.717
dc.identifier.citedreferenceCowley, S. W. H., Morelli, J. P., & Lockwood, M. ( 1991 ). Dependence of convective flows and particle precipitation in the high‐latitude dayside ionosphere on the X and Y components of the interplanetary magnetic field. Journal of Geophysical Research, 96, 5557 – 5564. https://doi.org/10.1029/90JA02063
dc.identifier.citedreferenceDelcourt, D. C., Grimald, S., Leblanc, F., Berthelier, J.‐J., Millilo, A., Mura, A., … Moore, T. E. ( 2003 ). A quantitative model of the planetary Na + contribution to Mercury’s magnetosphere. Annales de Geophysique, 21, 1723 – 1736. https://doi.org/doi:10.5194/angeo‐21‐1723‐2003
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., … Solomon, S. C. ( 2013 ). MESSENGER observations of magnetopause structure and dynamics at Mercury. Journal of Geophysical Research: Space Physics, 118, 997 – 1008. https://doi.org/10.1002/jgra.50123
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Imber, S. M., Gershman, D. J., Raines, J. M., Jackman, C. M., … Solomon, S. C. ( 2015 ). MESSENGER observations of flux ropes in Mercury’s magnetotail. Planetary and Space Science, 115, 77 – 89. https://doi.org/10.1016/j.pss.2014.12.016
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Raines, J. M., Gershman, D. J., Tracy, P. J., Boardsen, S. A., … Solomon, S. C. ( 2015 ). First observations of Mercury’s plasma mantle by MESSENGER. Geophysical Research Letters, 42, 9666 – 9675. https://doi.org/10.1002/2015GL065805
dc.identifier.citedreferenceDungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 47 – 48. https://doi.org/10.1103/PhysRevLett.6.47
dc.identifier.citedreferenceEgedal, J., Daughton, W., & Le, A. ( 2012 ). Large‐scale electron acceleration by parallel electric fields during magnetic reconnection. Nature Physics, 8, 321 – 324. https://doi.org/10.1038/nphys2249
dc.identifier.citedreferenceFu, Z. F., & Lee, L. C. ( 1985 ). Simulation of multiple X‐line reconnection at the dayside magnetopause. Geophysical Research Letters, 12, 291 – 294. https://doi.org/10.1029/GL012i005p00291
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., … Solomon, S. C. ( 2013 ). Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath, Journal of Geophysical Research: Space Physics, 118, 7181 – 7199. https://doi.org/10.1002/2013JA019244
dc.identifier.citedreferenceSiscoe, G. L., Ness, N. F., & Yeates, C. M. ( 1975 ). Substorms on Mercury? Journal of Geophysical Research, 80, 4359 – 4363. https://doi.org/10.1029/JA080i031p04359
dc.identifier.citedreferenceGershman, D. J., Zurbuchen, T. H., Fisk, L. A., Gilbert, J. A., Raines, J. M., Anderson, B. J., … Solomon, S. C. ( 2012 ). Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER. Journal of Geophysical Research, 117, A00M02. https://doi.org/10.1029/2012JA017829
dc.identifier.citedreferenceGosling, J. T., Thomsen, M. F., Bame, S. J., Elphic, R. C., & Russell, C. T. ( 1990 ). Plasma flow reversals at the dayside magnetopause and the origin of asymmetric polar cap convection. Journal of Geophysical Research, 95, 8073 – 8084. https://doi.org/10.1029/JA095iA06p08073
dc.identifier.citedreferenceHill, T. W., Dessler, A. J., & Wolf, R. A. ( 1976 ). Mercury and Mars: The role of ionospheric conductivity in the acceleration of magnetospheric particles. Geophysical Research Letters, 3, 429 – 432. https://doi.org/10.1029/GL003i008p00429
dc.identifier.citedreferenceHo, G., Raines, J. M., Nguyen, L., Gannon, M., & Reid, M. ( 2016 ). MESSENGER: Software interface specification for the derived records of the energetic particle and plasma spectrometer, NASA Planetary Data System, MESS‐E_V_H_SW‐EPPS‐3‐FIPS‐DDR‐V2.0.
dc.identifier.citedreferenceHones, E. W. Jr., Asbridge, J. R., Bame, S. J., Montgomery, M. D., Singer, S., & Akasofu, S.‐I. ( 1972 ). Measurements of magnetotail plasma flow made with Vela 4B. Journal of Geophysical Research, 77, 5503 – 5522. https://doi.org/10.1029/JA077i028p05503
dc.identifier.citedreferenceHorowitz, J. L., & Moore, T. E. ( 1997 ). Four contemporary issues concerning ionospheric plasma flow to the magnetosphere. Space Science Reviews, 80, 49 – 76.
dc.identifier.citedreferenceHuang, C.‐S. ( 2002 ). Evidence of periodic (2–3 hour) near‐tail magnetic reconnection and plasmoid formation: Geotail observations. Geophysical Research Letters, 29 ( 24 ), 2189. https://doi.org/10.1029/2002GL016162
dc.identifier.citedreferenceImber, S. M., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., McNutt, R. L. Jr., … Solomon, S. C. ( 2014 ). MESSENGER observations of large dayside flux transfer events: Do they drive Mercury’s substorm cycle? Journal of Geophysical Research: Space Physics, 119, 5613 – 5623. https://doi.org/10.1002/2014JA019884
dc.identifier.citedreferenceJasinski, J. M., Arridge, C. S., Lamy, L., Leisner, J. S., Thomsen, M. F., Mitchell, D. G., … Waite, J. H. ( 2014 ). Cusp observation at Saturn’s high‐latitude magnetosphere by the Cassini spacecraft. Geophysical Research Letters, 41, 1382 – 1388. https://doi.org/10.1002/2014GL059319
dc.identifier.citedreferenceJasinski, J. M., Slavin, J. A., Arridge, C. S., Poh, G., Jia, X., Sergis, N., … Waite, J. H. Jr. ( 2016 ). Flux transfer event observation at Saturn’s dayside magnetopause by the Cassini spacecraft. Geophysical Research Letters, 43, 6713 – 6723. https://doi.org/10.1002/2016GL069260
dc.identifier.citedreferenceJia, X., Slavin, J. A., Gombosi, T. I., Daldorff, L. K. S., Toth, G., & van der Holst, B. ( 2015 ). Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. Journal of Geophysical Research: Space Physics, 120, 4763 – 4775. https://doi.org/10.1002/2015JA021143
dc.identifier.citedreferenceJohnson, C. L., Purucker, M. E., Korth, H., Anderson, B. J., Winslow, R. M., Al Asad, M. M. H., … Solomon, S. C. ( 2012 ). MESSENGER observations of Mercury’s magnetic field structure. Journal of Geophysical Research, 117, E00L14. https://doi.org/10.1029/2012JE004217
dc.identifier.citedreferenceKivelson, M. G., & Ridley, A. J. ( 2008 ). Saturation of the polar cap potential: Inference from Alfve’n wing arguments. Journal of Geophysical Research, 113, A05214. https://doi.org/10.1029/2007JA012302
dc.identifier.citedreferenceKorth, H., Anderson, B. J., Gershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., … McNutt, R. L. Jr. ( 2014 ). Plasma distribution in Mercury’s magnetosphere derived from MESSENGER magnetometer and fast imaging plasma spectrometer observations. Journal of Geophysical Research: Space Physics, 119, 2917 – 2932. https://doi.org/10.1002/2013JA019567
dc.identifier.citedreferenceLi, X., Guo, F., Li, H., & Li, G. ( 2017 ). Particle acceleration during magnetic reconnection in a low‐beta plasma. The Astrophysical Journal, 843, 1. https://doi.org/10.3847/1538‐4357/aa745e
dc.identifier.citedreferenceLockwood, M., & Smith, M. F. ( 1994 ). Low and middle altitude cusp particle signatures for general magnetopause reconnection rate variations: 1. Theory. Journal of Geophysical Research, 99, 8531 – 8553. https://doi.org/10.1029/93JA03399
dc.identifier.citedreferenceMangano, V., Massetti, S., Milillo, A., Plainaki, C., Orsini, S., Rispoli, R., & Leblanc, F. ( 2015 ). THEMIS Na exosphere observations of Mercury and their correlation with in‐situ magnetic field measurements by MESSENGER. Planetary and Space Science, 115, 102 – 109. https://doi.org/10.1016/j.pss.2015.04.001
dc.identifier.citedreferenceMassetti, S., Mangano, V., Milillo, A., Mura, A., Orsini, S., & Plainaki, C. ( 2017 ). Short‐term observations of double‐peaked Na emission from Mercury’s exosphere. Geophysical Research Letters, 44, 2970 – 2977. https://doi.org/10.1002/2017GL073090
dc.identifier.citedreferenceMassetti, S., Orsini, S., Milillo, A., & Mura, A. ( 2007 ). Modelling Mercury’s magnetosphere and plasma entry through the dayside magnetosphere. Planetary and Space Science, 55, 1557 – 1568. https://doi.org/10.1016/j.pss.2006.12.008
dc.identifier.citedreferenceMasters, A. ( 2014 ). Magnetic reconnection at Uranus’ magnetopause. Journal of Geophysical Research: Space Physics, 119, 5520 – 5538. https://doi.org/10.1002/2014JA020077
dc.identifier.citedreferenceMasters, A. ( 2015 ). Magnetic reconnection at Neptune’s magnetopause. Journal of Geophysical Research: Space Physics, 120, 479 – 493. https://doi.org/10.1002/2014JA020744
dc.identifier.citedreferenceMilan, S. E., Provan, G., & Hubert, B. ( 2007 ). Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates. Journal of Geophysical Research, 112, A01209. https://doi.org/10.1029/2006JA011642
dc.identifier.citedreferenceMozer, F. S., & Retin’o, A. ( 2007 ). Quantitative estimates of magnetic field reconnection properties from electric and magnetic field measurements. Journal of Geophysical Research, 112, A10206. https://doi.org/10.1029/2007JA012406
dc.identifier.citedreferencePilipp, W. G., & Morfill, G. ( 1978 ). The formation of the plasma sheet resulting from plasma mantle dynamics. Journal of Geophysical Research, 83, 5670 – 5678. https://doi.org/10.1029/JA083iA12p05670
dc.identifier.citedreferencePitout, F., Escoubet, C. P., Klecker, B., & Rème, H. ( 2006 ). Cluster survey of the mid‐altitude cusp: 1. size, location, and dynamics. Annales de Geophysique, 24, 3011 – 3026. https://doi.org/10.5194/angeo‐24‐3011‐2006
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., DiBraccio, G. A., Raines, J. M., … Solomon, S. C. ( 2016 ). MESSENGER observations of cusp plasma filaments at Mercury. Journal of Geophysical Research: Space Physics, 121, 8260 – 8285. https://doi.org/10.1002/2016JA022552
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W.‐J., … Smith, A. W. ( 2017 ). Mercury’s cross‐tail current sheet: Structure, X‐line location and stress balance. Geophysical Research Letters, 44, 678 – 686. https://doi.org/10.1002/2016GL071612
dc.identifier.citedreferenceRaines, J. M., Gershman, D. J., Slavin, J. A., Zurbuchen, T. H., Korth, H., Anderson, B. J., & Solomon, S. C. ( 2014 ). Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions. Journal of Geophysical Research: Space Physics, 119, 6587 – 6602. https://doi.org/10.1002/2014JA020120
dc.identifier.citedreferenceRaines, J. M., Slavin, J. A., Zurbuchen, T. H., Gloeckler, G., Anderson, B. J., Baker, D. N., … McNutt, R. L. Jr. ( 2011 ). MESSENGER observations of the plasma environment near Mercury. Planetary and Space Science, 59, 2004 – 2015. https://doi.org/10.1016/j.pss.2011.02.004
dc.identifier.citedreferenceRassbach, M. E., Wolf, R. A., & Daniell, R. E. Jr. ( 1974 ). Convection in a Martian magnetosphere. Journal of Geophysical Research, 79, 1125 – 1127. https://doi.org/10.1029/JA079i007p01125
dc.identifier.citedreferenceReiff, P. H., Hill, T. W., & Burch, J. L. ( 1977 ). Solar wind plasma injection at the dayside magnetospheric cusp. Journal of Geophysical Research, 82, 479 – 491. https://doi.org/10.1029/JA082i004p00479
dc.identifier.citedreferenceRijnbeek, R. P., Cowley, S. W. H., Southwood, D. J., & Russell, C. T. ( 1984 ). A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers. Journal of Geophysical Research, 89, 786 – 800. https://doi.org/10.1029/JA089iA02p00786
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.