Show simple item record

Prospects from systems serology research

dc.contributor.authorArnold, Kelly B.
dc.contributor.authorChung, Amy W.
dc.date.accessioned2018-02-05T22:13:32Z
dc.date.available2019-05-13T14:45:28Zen
dc.date.issued2018-03
dc.identifier.citationArnold, Kelly B.; Chung, Amy W. (2018). "Prospects from systems serology research." Immunology 153(3): 279-289.
dc.identifier.issn0019-2805
dc.identifier.issn1365-2567
dc.identifier.urihttps://hdl.handle.net/2027.42/142338
dc.publisherHeinemann Educational Books Ltd
dc.publisherWiley Periodicals, Inc.
dc.subject.otherFc
dc.subject.otherFc receptors
dc.subject.othervaccine
dc.subject.otherFab
dc.subject.otherantibody
dc.titleProspects from systems serology research
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142338/1/imm12861.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142338/2/imm12861_am.pdf
dc.identifier.doi10.1111/imm.12861
dc.identifier.sourceImmunology
dc.identifier.citedreferenceShannon JG, Cockrell DC, Takahashi K, Stahl GL, Heinzen RA. Antibody‐mediated immunity to the obligate intracellular bacterial pathogen Coxiella burnetii is Fc receptor‐ and complement‐independent. BMC Immunol 2009; 10: 26.
dc.identifier.citedreferenceOyelaran O, Gildersleeve JC. Glycan arrays: recent advances and future challenges. Curr Opin Chem Biol 2009; 13: 406 – 13.
dc.identifier.citedreferenceAngenendt P. Progress in protein and antibody microarray technology. Drug Discov Today 2005; 10: 503 – 11.
dc.identifier.citedreferenceReineke U, Ivascu C, Schlief M, Landgraf C, Gericke S, Zahn G, et al. Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences. J Immunol Methods 2002; 267: 37 – 51.
dc.identifier.citedreferenceStratov I, Chung A, Kent SJ. Robust NK cell‐mediated human immunodeficiency virus (HIV)‐specific antibody‐dependent responses in HIV‐infected subjects. J Virol 2008; 82: 5450 – 9.
dc.identifier.citedreferenceBrown EP, Licht AF, Dugast AS, Choi I, Bailey‐Kellogg C, Alter G, et al. High‐throughput, multiplexed IgG subclassing of antigen‐specific antibodies from clinical samples. J Immunol Methods 2012; 386: 117 – 23.
dc.identifier.citedreferenceGottardo R, Bailer RT, Korber BT, Gnanakaran S, Phillips J, Shen X, et al. Plasma IgG to linear epitopes in the V2 and V3 regions of HIV‐1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial. PLoS One 2013; 8: e75665.
dc.identifier.citedreferenceChung AW, Isitman G, Navis M, Kramski M, Center RJ, Kent SJ, et al. Immune escape from HIV‐specific antibody‐dependent cellular cytotoxicity (ADCC) pressure. Proc Natl Acad Sci USA 2011b; 108: 7505 – 10.
dc.identifier.citedreferenceMalmqvist M. Surface plasmon resonance for detection and measurement of antibody‐antigen affinity and kinetics. Curr Opin Immunol 1993; 5: 282 – 6.
dc.identifier.citedreferenceKlasse PJ. How to assess the binding strength of antibodies elicited by vaccination against HIV and other viruses. Expert Rev Vaccines 2016; 15: 295 – 311.
dc.identifier.citedreferenceMadhavi V, Wines BD, Amin J, Emery S, Lopez E, Kelleher A., et al. HIV‐1 Env‐ and Vpu‐specific antibody‐dependent cellular cytotoxicity responses associated with elite control of HIV. J Virol 2017; 91 ( 18 ): pii: e00700 – 17.
dc.identifier.citedreferenceCleary KLS, Chan HTC, James S, Glennie MJ, Cragg MS. Antibody distance from the cell membrane regulates antibody effector mechanisms. J Immunol 2017; 198: 3999 – 4011.
dc.identifier.citedreferenceMcLean MR, Madhavi V, Wines BD, Hogarth PM, Chung AW, Kent SJ. Dimeric Fc γ receptor enzyme‐linked immunosorbent assay to study hiv‐specific antibodies: a new look into breadth of Fc γ receptor antibodies induced by the RV144 vaccine trial. J Immunol 2017; 199: 816 – 29.
dc.identifier.citedreferenceMadhavi V, Wren LH, Center RJ, Gonelli C, Winnall WR, Parsons MS, et al. Breadth of HIV‐1 Env‐specific antibody‐dependent cellular cytotoxicity: relevance to global HIV vaccine design. AIDS 2014; 28: 1859 – 70.
dc.identifier.citedreferenceBrown EP, Dowell KG, Boesch AW, Normandin E, Mahan AE, Chu T, et al. Multiplexed Fc array for evaluation of antigen‐specific antibody effector profiles. J Immunol Methods 2017; 443: 33 – 44.
dc.identifier.citedreferenceMahan AE, Jennewein MF, Suscovich T, Dionne K, Tedesco J, Chung AW, et al. Antigen‐specific antibody glycosylation is regulated via vaccination. PLoS Pathog 2016; 12: e1005456.
dc.identifier.citedreferencePandey JP, Namboodiri AM. Genetic variants of IgG1 antibodies and Fc γ RIIIa receptors influence the magnitude of antibody‐dependent cell‐mediated cytotoxicity against prostate cancer cells. Oncoimmunology 2014; 3: e27317.
dc.identifier.citedreferenceVidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014; 5: 520.
dc.identifier.citedreferenceLefranc MP, Lefranc G. Human Gm, Km, and Am allotypes and their molecular characterization: a remarkable demonstration of polymorphism. Methods Mol Biol 2012; 882: 635 – 80.
dc.identifier.citedreferenceSuzuki T, Ishii‐Watabe A, Tada M, Kobayashi T, Kanayasu‐Toyoda T, Kawanishi T, et al. Importance of neonatal FcR in regulating the serum half‐life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc‐fusion proteins to human neonatal FcR. J Immunol 2010; 184: 1968 – 76.
dc.identifier.citedreferenceNimmerjahn F, Ravetch JV. Analyzing antibody‐Fc‐receptor interactions. Methods Mol Biol 2008; 415: 151 – 62.
dc.identifier.citedreferenceBaxby D. Jenner’s Smallpox Vaccine. London: Heinemann Educational Books Ltd, 1981.
dc.identifier.citedreferencePlotkin SA. Vaccines: the fourth century. Clin Vaccine Immunol 2009; 16: 1709 – 19.
dc.identifier.citedreferencePlotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol 2010; 17: 1055 – 65.
dc.identifier.citedreferencePulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol 2011; 12: 509 – 17.
dc.identifier.citedreferenceLee LH, Frasch CE, Falk LA, Klein DL, Deal CD. Correlates of immunity for pneumococcal conjugate vaccines. Vaccine 2003; 21: 2190 – 6.
dc.identifier.citedreferenceCheeseman HM, Carias AM, Evans AB, Olejniczak NJ, Ziprin P, King DF, et al. Expression profile of human Fc receptors in mucosal tissue: implications for antibody‐dependent cellular effector functions targeting HIV‐1 transmission. PLoS One 2016; 11: e0154656.
dc.identifier.citedreferenceSips M, Krykbaeva M, Diefenbach TJ, Ghebremichael M, Bowman BA, Dugast AS, et al. Fc receptor‐mediated phagocytosis in tissues as a potent mechanism for preventive and therapeutic HIV vaccine strategies. Mucosal Immunol 2016; 9: 1584 – 95.
dc.identifier.citedreferenceVincents B, von Pawel‐Rammingen U, Bjorck L, Abrahamson M. Enzymatic characterization of the streptococcal endopeptidase, IdeS, reveals that it is a cysteine protease with strict specificity for IgG cleavage due to exosite binding. Biochemistry 2004; 43: 15540 – 9.
dc.identifier.citedreferenceNagashunmugam T, Lubinski J, Wang L, Goldstein LT, Weeks BS, Sundaresan P, et al. In vivo immune evasion mediated by the herpes simplex virus type 1 immunoglobulin G Fc receptor. J Virol 1998; 72: 5351 – 9.
dc.identifier.citedreferenceBrezski RJ, Vafa O, Petrone D, Tam SH, Powers G, Ryan MH, et al. Tumor‐associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge. Proc Natl Acad Sci USA 2009; 106: 17864 – 9.
dc.identifier.citedreferenceRerks‐Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV‐1 infection in Thailand. N Engl J Med 2009; 361: 2209 – 20.
dc.identifier.citedreferenceHaynes BF, Gilbert PB, McElrath MJ, Zolla‐Pazner S, Tomaras GD, Alam SM, et al. Immune‐correlates analysis of an HIV‐1 vaccine efficacy trial. N Engl J Med 2012; 366: 1275 – 86.
dc.identifier.citedreferenceZolla‐Pazner S, deCamp A, Gilbert PB, Williams C, Yates NL, Williams WT, et al. Vaccine‐induced IgG antibodies to V1V2 regions of multiple HIV‐1 subtypes correlate with decreased risk of HIV‐1 infection. PLoS One 2014; 9: e87572.
dc.identifier.citedreferenceYates NL, Liao HX, Fong Y, deCamp A, Vandergrift NA, Williams WT, et al. Vaccine‐induced Env V1‐V2 IgG3 correlates with lower HIV‐1 infection risk and declines soon after vaccination. Sci Transl Med 2014; 6: 228ra39.
dc.identifier.citedreferenceChung AW, Ghebremichael M, Robinson H, Brown E, Choi I, Lane S, et al. Polyfunctional Fc‐effector profiles mediated by IgG subclass selection distinguish RV144 and VAX003 vaccines. Sci Transl Med 2014a; 6: 228ra38.
dc.identifier.citedreferenceBarouch DH, Liu J, Li H, Maxfield LF, Abbink P, Lynch DM, et al. Vaccine protection against acquisition of neutralization‐resistant SIV challenges in rhesus monkeys. Nature 2012; 482: 89 – 93.
dc.identifier.citedreferenceBarouch DH, Stephenson KE, Borducchi EN, Smith K, Stanley K, McNally AG, et al. Protective efficacy of a global HIV‐1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys. Cell 2013; 155: 531 – 9.
dc.identifier.citedreferenceBradley T, Pollara J, Santra S, Vandergrift N, Pittala S, Bailey‐Kellogg C, et al. Pentavalent HIV‐1 vaccine protects against simian‐human immunodeficiency virus challenge. Nat Commun 2017; 8: 15711.
dc.identifier.citedreferenceChung AW, Kumar MP, Arnold KB, Yu WH, Schoen MK, Dunphy LJ, et al. Dissecting polyclonal vaccine‐induced humoral immunity against HIV using systems serology. Cell 2015; 163: 988 – 98.
dc.identifier.citedreferenceAckerman ME, Barouch DH, Alter G. Systems serology for evaluation of HIV vaccine trials. Immunol Rev 2017; 275: 262 – 70.
dc.identifier.citedreferenceSchroeder HW Jr, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol 2010; 125: S41 – 52.
dc.identifier.citedreferenceWoof JM, Russell MW. Structure and function relationships in IgA. Mucosal Immunol 2011; 4: 590 – 7.
dc.identifier.citedreferenceChoi SC, Wang H, Tian L, Murakami Y, Shin DM, Borrego F, et al. Mouse IgM Fc receptor, FCMR, promotes B cell development and modulates antigen‐driven immune responses. J Immunol 2013; 190: 987 – 96.
dc.identifier.citedreferenceZhang M, Murphy RF, Agrawal DK. Decoding IgE Fc receptors. Immunol Res 2007; 37: 1 – 16.
dc.identifier.citedreferenceCapron M, Capron A. Immunoglobulin E and effector cells in schistosomiasis. Science 1994; 264: 1876 – 7.
dc.identifier.citedreferenceChung AW, Alter G. Dissecting the antibody constant region protective immune parameters in HIV infection. Future Virol 2014; 9: 397 – 414.
dc.identifier.citedreferenceHogarth PM, Pietersz GA. Fc receptor‐targeted therapies for the treatment of inflammation, cancer and beyond. Nat Rev Drug Discov 2012; 11: 311 – 31.
dc.identifier.citedreferenceJefferis R. Glycosylation as a strategy to improve antibody‐based therapeutics. Nat Rev Drug Discovery 2009; 8: 226 – 34.
dc.identifier.citedreferenceJefferis R. Isotype and glycoform selection for antibody therapeutics. Arch Biochem Biophys 2012; 526: 159 – 66.
dc.identifier.citedreferenceHristodorov D, Fischer R, Linden L. With or without sugar? (A)glycosylation of therapeutic antibodies. Mol Biotechnol 2013; 54: 1056 – 68.
dc.identifier.citedreferenceChung AW, Crispin M, Pritchard L, Robinson H, Gorny MK, Yu X, et al. Identification of antibody glycosylation structures that predict monoclonal antibody Fc‐effector function. AIDS 2014b; 28: 2523 – 30.
dc.identifier.citedreferenceSatoh M, Iida S, Shitara K. Non‐fucosylated therapeutic antibodies as next‐generation therapeutic antibodies. Expert Opin Biol Ther 2006; 6: 1161 – 73.
dc.identifier.citedreferenceLu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH, Grace PS, et al. A functional role for antibodies in tuberculosis. Cell 2016; 167: 433 – 43.e14.
dc.identifier.citedreferenceBenedict KF, Lauffenburger DA. Insights into proteomic immune cell signaling and communication via data‐driven modeling. Curr Top Microbiol Immunol 2013; 363: 201 – 33.
dc.identifier.citedreferenceQuerec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 2009; 10: 116 – 25.
dc.identifier.citedreferenceKazmin D, Nakaya HI, Lee EK, Johnson MJ, van der Most R, van den Berg RA, et al. Systems analysis of protective immune responses to RTS, S malaria vaccination in humans. Proc Natl Acad Sci USA 2017; 114: 2425 – 30.
dc.identifier.citedreferenceLi S, Rouphael N, Duraisingham S, Romero‐Steiner S, Presnell S, Davis C, et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol 2014; 15: 195 – 204.
dc.identifier.citedreferenceChoi I, Chung AW, Suscovich TJ, Rerks‐Ngarm S, Pitisuttithum P, Nitayaphan S, et al. Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees. PLoS Comput Biol 2015; 11: e1004185.
dc.identifier.citedreferenceJolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci 2016; 374: 20150202.
dc.identifier.citedreferenceBrereton RG, Lloyd GR. Partial least squares discriminant analysis: taking the magic away. J Chemom 2014; 28: 213 – 25.
dc.identifier.citedreferenceBarker M, Rayens W. Partial least squares for discrimination. J Chemom 2003; 17: 166 – 73.
dc.identifier.citedreferenceArnold KB, Szeto GL, Alter G, Irvine DJ, Lauffenburger DA. CD4 + T cell‐dependent and CD4 + T cell‐independent cytokine‐chemokine network changes in the immune responses of HIV‐infected individuals. Sci Signal 2015; 8: ra104.
dc.identifier.citedreferenceArchary D, Seaton KE, Passmore JS, Werner L, Deal A, Dunphy LJ, et al. Distinct genital tract HIV‐specific antibody profiles associated with tenofovir gel. Mucosal Immunol 2016; 9: 821 – 33.
dc.identifier.citedreferenceTibshirani R. The LASSO method for variable selection in the Cox model. Stat Med 1997; 16: 385 – 95.
dc.identifier.citedreferenceBarouch DH, Alter G, Broge T, Linde C, Ackerman ME, Brown EP, et al. Protective efficacy of adenovirus‐protein vaccines against SIV challenges in rhesus monkeys. Science 2015; 349: 320 – 4.
dc.identifier.citedreferenceGeurts P, Irrthum A, Wehenkel L. Supervised learning with decision tree‐based methods in computational and systems biology. Mol BioSyst 2009; 5: 1593 – 605.
dc.identifier.citedreferenceWessler T, Chen A, McKinley SA, Cone R, Forest G, Lai SK. Using computational modeling to optimize the design of antibodies that trap viruses in mucus. ACS Infect Dis 2016; 2: 82 – 92.
dc.identifier.citedreferenceChung AW, Navis M, Isitman G, Wren L, Silvers J, Amin J, et al. Activation of NK cells by ADCC antibodies and HIV disease progression. J Acquir Immune Defic Syndr 2011a; 58: 127 – 31.
dc.identifier.citedreferenceBaum LL, Cassutt KJ, Knigge K, Khattri R, Margolick J, Rinaldo C, et al. HIV‐1 gp120‐specific antibody‐dependent cell‐mediated cytotoxicity correlates with rate of disease progression. J Immunol 1996; 157: 2168 – 73.
dc.identifier.citedreferenceChung A, Rollman E, Johansson S, Kent SJ, Stratov I. The utility of ADCC responses in HIV infection. Curr HIV Res 2008; 6: 515 – 9.
dc.identifier.citedreferenceJegerlehner A, Schmitz N, Storni T, Bachmann MF. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody‐dependent NK cell activity. J Immunol 2004; 172: 5598 – 605.
dc.identifier.citedreferenceJegaskanda S, Job ER, Kramski M, Laurie K, Isitman G, de Rose R, et al. Cross‐reactive influenza‐specific antibody‐dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. J Immunol 2013; 190: 1837 – 48.
dc.identifier.citedreferenceVanderven HA, Liu L, Ana‐Sosa‐Batiz F, Nguyen TH, Wan Y, Wines B, et al. Fc functional antibodies in humans with severe H7N9 and seasonal influenza. JCI Insight 2017; 2: pii: 92750.
dc.identifier.citedreferenceLiu Q, Fan C, Li Q, Zhou S, Huang W, Wang L, et al. Antibody‐dependent‐cellular‐cytotoxicity‐inducing antibodies significantly affect the post‐exposure treatment of Ebola virus infection. Sci Rep 2017; 7: 45552.
dc.identifier.citedreferenceWarfield KL, Swenson DL, Olinger GG, Kalina WV, Aman MJ, Bavari S. Ebola virus‐like particle‐based vaccine protects nonhuman primates against lethal Ebola virus challenge. J Infect Dis 2007; 196 ( Suppl 2 ): S430 – 7.
dc.identifier.citedreferenceKohl S. Role of antibody‐dependent cellular cytotoxicity in neonatal infection with herpes simplex virus. Rev Infect Dis 1991; 13 ( Suppl 11 ): S950 – 2.
dc.identifier.citedreferenceDas S, Chowdhury R, Ghosh S, Das S. A recombinant protein of Salmonella Typhi induces humoral and cell‐mediated immune responses including memory responses. Vaccine 2017; 35: 4523 – 31.
dc.identifier.citedreferenceMoore T, Ananaba GA, Bolier J, Bowers S, Belay T, Eko FO, et al. Fc receptor regulation of protective immunity against Chlamydia trachomatis. Immunology 2002; 105: 213 – 21.
dc.identifier.citedreferenceMiller GP, Kohl S. Antibody‐dependent leukocyte killing of Cryptococcus neoformans. J Immunol 1983; 131: 1455 – 9.
dc.identifier.citedreferenceKurup VP, Nair MP, Schwartz SA, Fink JN. Serum antibodies and their role in antibody‐dependent cell‐mediated cytotoxicity in aspergillosis. Immunobiology 1985; 169: 362 – 71.
dc.identifier.citedreferenceLigas JA, Kerepesi LA, Galioto AM, Lustigman S, Nolan TJ, Schad GA, et al. Specificity and mechanism of immunoglobulin M (IgM)‐ and IgG‐dependent protective immunity to larval Strongyloides stercoralis in mice. Infect Immun 2003; 71: 6835 – 43.
dc.identifier.citedreferenceJafarshad A, Dziegiel MH, Lundquist R, Nielsen LK, Singh S, Druilhe PL. A novel antibody‐dependent cellular cytotoxicity mechanism involved in defense against malaria requires costimulation of monocytes Fc γ RII and Fc γ RIII. J Immunol 2007; 178: 3099 – 106.
dc.identifier.citedreferenceTamura M, Webster RG, Ennis FA. Antibodies to HA and NA augment uptake of influenza A viruses into cells via Fc receptor entry. Virology 1991; 182: 211 – 9.
dc.identifier.citedreferenceAna‐Sosa‐Batiz F, Vanderven H, Jegaskanda S, Johnston A, Rockman S, Laurie K, et al. Influenza‐specific antibody‐dependent phagocytosis. PLoS One 2016; 11: e0154461.
dc.identifier.citedreferenceGat O, Galen JE, Tennant S, Simon R, Blackwelder WC, Silverman DJ, et al. Cell‐associated flagella enhance the protection conferred by mucosally‐administered attenuated Salmonella Paratyphi A vaccines. PLoS Negl Trop Dis 2011; 5: e1373.
dc.identifier.citedreferenceHe X, Sun X, Wang J, Wang X, Zhang Q, Tzipori S, et al. Antibody‐enhanced, Fc γ receptor‐mediated endocytosis of Clostridium difficile toxin A. Infect Immun 2009; 77: 2294 – 303.
dc.identifier.citedreferenceArmstrong JA, Hart PD. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 1971; 134: 713 – 40.
dc.identifier.citedreferenceBueno RA, Thomaz L, Munoz JE, da Silva CJ, Nosanchuk JD, Pinto MR, et al. Antibodies against glycolipids enhance antifungal activity of macrophages and reduce fungal burden after infection with Paracoccidioides brasiliensis. Front Microbiol 2016; 7: 74.
dc.identifier.citedreferenceBraem SG, Rooijakkers SH, van Kessel KP, de Cock H, Wosten HA, van Strijp JA, et al. Effective neutrophil phagocytosis of Aspergillus fumigatus is mediated by classical pathway complement activation. J Innate Immun 2015; 7: 364 – 74.
dc.identifier.citedreferenceTeo A, Feng G, Brown GV, Beeson JG, Rogerson SJ. Functional antibodies and protection against blood‐stage malaria. Trends Parasitol 2016; 32: 887 – 98.
dc.identifier.citedreferenceJoiner KA, Fuhrman SA, Miettinen HM, Kasper LH, Mellman I. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor‐transfected fibroblasts. Science 1990; 249: 641 – 6.
dc.identifier.citedreferenceRamachandran G, Tennant SM, Boyd MA, Wang JY, Tulapurkar ME, Pasetti MF, et al. Functional activity of antibodies directed towards flagellin proteins of non‐typhoidal salmonella. PLoS One 2016; 11: e0151875.
dc.identifier.citedreferenceNowling JM, Philipp MT. Killing of Borrelia burgdorferi by antibody elicited by OspA vaccine is inefficient in the absence of complement. Infect Immun 1999; 67: 443 – 5.
dc.identifier.citedreferenceHan Y, Kozel TR, Zhang MX, MacGill RS, Carroll MC, Cutler JE. Complement is essential for protection by an IgM and an IgG3 monoclonal antibody against experimental, hematogenously disseminated candidiasis. J Immunol 2001; 167: 1550 – 7.
dc.identifier.citedreferenceBoyle MJ, Reiling L, Feng G, Langer C, Osier FH, Aspeling‐Jones H, et al. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria. Immunity 2015; 42: 580 – 90.
dc.identifier.citedreferenceChung AW, Rollman E, Center RJ, Kent SJ, Stratov I. Rapid degranulation of NK cells following activation by HIV‐specific antibodies. J Immunol 2009; 182: 1202 – 10.
dc.identifier.citedreferenceVouldoukis I, Riveros‐Moreno V, Dugas B, Ouaaz F, Becherel P, Debre P, et al. The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc ε RII/CD23 surface antigen. Proc Natl Acad Sci USA 1995; 92: 7804 – 8.
dc.identifier.citedreferenceJoos C, Marrama L, Polson HE, Corre S, Diatta AM, Diouf B, et al. Clinical protection from falciparum malaria correlates with neutrophil respiratory bursts induced by merozoites opsonized with human serum antibodies. PLoS One 2010; 5: e9871.
dc.identifier.citedreferenceLlewellyn D, Miura K, Fay MP, Williams AR, Murungi LM, Shi J, et al. Standardization of the antibody‐dependent respiratory burst assay with human neutrophils and Plasmodium falciparum malaria. Sci Rep 2015; 5: 14081.
dc.identifier.citedreferenceGibson‐Corley KN, Bockenstedt MM, Li H, Boggiatto PM, Phanse Y, Petersen CA, et al. An in vitro model of antibody‐enhanced killing of the intracellular parasite Leishmania amazonensis. PLoS One 2014; 9: e106426.
dc.identifier.citedreferenceForthal DN, Gilbert PB, Landucci G, Phan T. Recombinant gp120 vaccine‐induced antibodies inhibit clinical strains of HIV‐1 in the presence of Fc receptor‐bearing effector cells and correlate inversely with HIV infection rate. J Immunol 2007; 178: 6596 – 603.
dc.identifier.citedreferenceMoore T, Ekworomadu CO, Eko FO, MacMillan L, Ramey K, Ananaba GA, et al. Fc receptor‐mediated antibody regulation of T cell immunity against intracellular pathogens. J Infect Dis 2003; 188: 617 – 24.
dc.identifier.citedreferenceBouharoun‐Tayoun H, Attanath P, Sabchareon A, Chongsuphajaisiddhi T, Druilhe P. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med 1990; 172: 1633 – 41.
dc.identifier.citedreferenceLewis GK, Finzi A, DeVico AL, Pazgier M. Conformational masking and receptor‐dependent unmasking of highly conserved Env epitopes recognized by non‐neutralizing antibodies that mediate potent ADCC against HIV‐1. Viruses 2015; 7: 5115 – 32.
dc.identifier.citedreferenceRichard J, Veillette M, Brassard N, Iyer SS, Roger M, Martin L, et al. CD4 mimetics sensitize HIV‐1‐infected cells to ADCC. Proc Natl Acad Sci USA 2015; 112: E2687 – 94.
dc.identifier.citedreferenceVanham G, Bloemmen FJ, Ceuppens JL, Stevens EA. Influence of immune‐complex size and antigen‐antibody ratio on immune complex detection with monoclonal rheumatoid factor and C1q. J Clin Lab Immunol 1984; 15: 63 – 8.
dc.identifier.citedreferenceLux A, Yu X, Scanlan CN, Nimmerjahn F. Impact of immune complex size and glycosylation on IgG binding to human Fc γ Rs. J Immunol 2013; 190: 4315 – 23.
dc.identifier.citedreferenceKingsmore SF. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov 2006; 5: 310 – 20.
dc.identifier.citedreferenceSchwarz M, Spector L, Gargir A, Shtevi A, Gortler M, Altstock RT, et al. A new kind of carbohydrate array, its use for profiling antiglycan antibodies, and the discovery of a novel human cellulose‐binding antibody. Glycobiology 2003; 13: 749 – 54.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.