Show simple item record

Anthropogenic nitrogen deposition ameliorates the decline in tree growth caused by a drier climate

dc.contributor.authorIbáñez, Inés
dc.contributor.authorZak, Donald R.
dc.contributor.authorBurton, Andrew J.
dc.contributor.authorPregitzer, Kurt S.
dc.date.accessioned2018-02-05T22:13:35Z
dc.date.available2019-04-01T15:01:11Zen
dc.date.issued2018-02
dc.identifier.citationIbiáñez, Inés ; Zak, Donald R.; Burton, Andrew J.; Pregitzer, Kurt S. (2018). "Anthropogenic nitrogen deposition ameliorates the decline in tree growth caused by a drier climate." Ecology 99(2): 411-420.
dc.identifier.issn0012-9658
dc.identifier.issn1939-9170
dc.identifier.urihttps://hdl.handle.net/2027.42/142341
dc.description.abstractMost forest ecosystems are simultaneously affected by concurrent global change drivers. However, when assessing these effects, studies have mainly focused on the responses to single factors and have rarely evaluated the joined effects of the multiple aspects of environmental change. Here, we analyzed the combined effects of anthropogenic nitrogen (N) deposition and climatic conditions on the radial growth of Acer saccharum, a dominant tree species in eastern North American forests. We capitalized on a long‐term N deposition study, replicated along a latitudinal gradient, that has been taking place for more than 20 yr. We analyzed tree radial growth as a function of anthropogenic N deposition (ambient and experimental addition) and of summer temperature and soil water conditions. Our results reveal that experimental N deposition enhances radial growth of this species, an effect that was accentuated as temperature increased and soil water became more limiting. The spatial and temporal extent of our data also allowed us to assert that the positive effects of growing under the experimental N deposition are likely due to changes in the physiological performance of this species, and not due to the positive correlation between soil N and soil water holding capacity, as has been previously speculated in other studies. Our simulations of tree growth under forecasted climate scenarios specific for this region also revealed that although anthropogenic N deposition may enhance tree growth under a large array of environmental conditions, it will not mitigate the expected effects of growing under the considerably drier conditions characteristic of our most extreme climatic scenario.
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othersugar maple
dc.subject.otherAcer saccharum
dc.subject.otherdiameter growth
dc.subject.otherdrought
dc.subject.otherfertilization effect
dc.subject.otherglobal warming
dc.subject.otherlag effects
dc.subject.othernorthern hardwood forest
dc.subject.otherphysiological response
dc.titleAnthropogenic nitrogen deposition ameliorates the decline in tree growth caused by a drier climate
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142341/1/ecy2095-sup-0004-AppendixS4.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142341/2/ecy2095-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142341/3/ecy2095-sup-0006-AppendixS6.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142341/4/ecy2095-sup-0007-AppendixS7.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142341/5/ecy2095_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142341/6/ecy2095-sup-0008-AppendixS8.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142341/7/ecy2095-sup-0003-AppendixS3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142341/8/ecy2095-sup-0002-AppendixS2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142341/9/ecy2095-sup-0005-AppendixS5.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142341/10/ecy2095.pdf
dc.identifier.doi10.1002/ecy.2095
dc.identifier.sourceEcology
dc.identifier.citedreferencePeltier, D. M. P., M. Fell, and K. Ogle. 2016. Legacy effects of drought in the southwestern United States: a multi‐species synthesis. Ecological Monographs 86: 312 – 326.
dc.identifier.citedreferenceNilsen, P. 1995. Effect of nitrogen on drought strain and nutrient uptake in Norway spruce Picea abies (L.) Karst. trees. Plant and Soil 172: 73 – 85.
dc.identifier.citedreferenceOgle, K., J. J. Barber, G. A. Barron‐Gafford, L. P. Bentley, J. M. Young, T. E. Huxman, M. E. Loik, and D. T. Tissue. 2015. Quantifying ecological memory in plant and ecosystem processes. Ecology Letters 18: 221 – 235.
dc.identifier.citedreferenceOllinger, S. V., J. D. Aber, P. B. Reich, and R. J. Freuder. 2002. Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests. Global Change Biology 8: 545 – 562.
dc.identifier.citedreferencePeltier, D., and I. Ibáñez. 2015. Patterns and variability in seedling carbon assimilation: implications for tree seedlings recruitment under climate change. Tree Physiology 35: 71 – 85.
dc.identifier.citedreferencePerakis, S. S., D. A. Maguire, T. D. Bullen, K. Cromack, R. H. Waring, and J. Boyle. 2006. Coupled nitrogen and calcium cycles in forests of the Oregon Coast range. Ecosystems 9: 63 – 74.
dc.identifier.citedreferencePregitzer, K. S., A. J. Burton, D. R. Zak, and A. F. Talhelm. 2008. Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Global Change Biology 14: 142 – 153.
dc.identifier.citedreferenceRose, K. E., R. L. Atkinson, L. A. Turnbull, and M. Rees. 2009. The costs and benefits of fast living. Ecology Letters 12: 1379 – 1384.
dc.identifier.citedreferenceSolberg, S., M. Dobbertin, G. J. Reinds, H. Lange, K. Andreassen, P. G. Fernandez, A. Hildingsson, and W. de Vries. 2009. Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. Forest Ecology and Management 258: 1735 – 1750.
dc.identifier.citedreferenceSpinnler, D., P. Egli, and C. Körner. 2003. Provenance effects and allometry in beech and spruce under elevated CO2 and nitrogen on two different forest soils. Basic and Applied Ecology 4: 467 – 478.
dc.identifier.citedreferenceSuddick, E. C., P. Whitney, A. R. Townsend, and E. A. Davidson. 2013. The role of nitrogen in climate change and the impacts of nitrogen–climate interactions in the United States: foreword to thematic issue. Biogeochemistry 114: 1 – 10.
dc.identifier.citedreferenceTalhelm, A. F., K. S. Pregitzer, and A. J. Burton. 2011. No evidence that chronic nitrogen additions increase photosynthesis in mature sugar maple forests. Ecological Applications 21: 2413 – 2424.
dc.identifier.citedreferenceTalhelm, A. F., K. S. Pregitzer, A. J. Burton, and D. R. Zak. 2012. Air pollution and the changing biogeochemistry of northern forests. Frontiers in Ecology and the Environment 10: 181 – 185.
dc.identifier.citedreferenceThomas, A., R. O’Hara, U. Ligges, and S. Sturts. 2006. Making BUGS open. R News 6: 12 – 17.
dc.identifier.citedreferenceThomas, R. Q., C. D. Canham, K. C. Weathers, and C. L. Goodale. 2010. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience 3: 13 – 17.
dc.identifier.citedreferenceValladares, F., et al. 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters 17: 1351 – 1364.
dc.identifier.citedreferenceVandereerden, L. J. M., and M. Perezsoba. 1992. Physiological responses of Pinus sylvestris to atmospheric ammonia. Trees—Structure and Function 6: 48 – 53.
dc.identifier.citedreferenceVicca, S., et al. 2012. Fertile forests produce biomass more efficiently. Ecology Letters 15: 520 – 526.
dc.identifier.citedreferenceVitousek, P. M., and R. W. Howarth. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87 – 115.
dc.identifier.citedreferenceVitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. G. Tilman. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7: 737 – 750.
dc.identifier.citedreferenceVose, J. M., J. S. Clark, C. H. Luce, and T. Patel‐Weynand, eds. 2016. Effects of drought on forests and rangelands in the United States: a comprehensive science synthesis. General Technical Report WO‐93b. U.S. Department of Agriculture, Forest Service, Washington Office, Washington, D.C., USA.
dc.identifier.citedreferenceWalters, M. B., and P. B. Reich. 1997. Growth of Acer saccharum seedlings in deeply shaded understories of northern Wisconsin: effects of nitrogen and water availability. Canadian Journal of Forest Research 27: 237 – 247.
dc.identifier.citedreferenceWill, R. E., et al. 2015. A range‐wide experiment to investigate nutrient and soil moisture interactions in Loblolly pine plantations. Forests 6: 2014 – 2028.
dc.identifier.citedreferenceWurzburger, N., and C. F. Miniat. 2014. Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree. Oecologia 174: 1117 – 1126.
dc.identifier.citedreferenceWyckoff, P. H., and J. S. Clark. 2002. The relationship between growth and mortality for seven co‐ occurring tree species in the southern Appalachian Mountains. Journal of Ecology 90: 604 – 615.
dc.identifier.citedreferenceXia, J., and S. Wan. 2008. Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist 179: 428 – 439.
dc.identifier.citedreferenceZaccherio, M. T., and A. C. Finzi. 2007. Atmospheric deposition may affect northern hardwood forest composition by altering soil nutrient supply. Ecological Applications 17: 1929 – 1941.
dc.identifier.citedreferenceAdams, H. D., and T. E. Kolb. 2005. Tree growth response to drought and temperature in a mountain landscape in northern Arizona, USA. Journal of Biogeography 32: 1629 – 1640.
dc.identifier.citedreferenceBahari, Z. A., S. G. Pallardy, and W. C. Parker. 1985. Photosynthesis, water relations, and drought adaptation in six woody species of oak‐hickory forests in central Missouri. Journal of Forest Science 31: 557 – 569.
dc.identifier.citedreferenceBaribault, T., R. Kobe, and D. Rothstein. 2010. Soil calcium, nitrogen, and water are correlated with above ground net primary production in northern hardwood forests. Forest Ecology and Management 260: 723 – 733.
dc.identifier.citedreferenceBauce, E., and D. C. Allen. 1991. Etiology of a sugar maple decline. Canadian Journal of Forest Research 21: 686 – 693.
dc.identifier.citedreferenceBedison, J. E., and B. E. McNeil. 2009. Is the growth of temperate forest trees enhanced along an ambient nitrogen deposition gradient? Ecology 90: 1736 – 1742.
dc.identifier.citedreferenceBishop, D. A., C. M. Beier, N. Pederson, G. B. Lawrence, J. C. Stella, and T. J. Sullivan. 2015. Regional growth decline of sugar maple ( Acer saccharum ) and its potential causes. Ecosphere 6: 1 – 14.
dc.identifier.citedreferenceBobbink, R., et al. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications 20: 30 – 59.
dc.identifier.citedreferenceBorghetti, M., T. Gentilesca, S. Leonardi, T. van Noije, and A. Rita. 2017. Long‐term temporal relationships between environmental conditions and xylem functional traits: a meta‐analysis across a range of woody species along climatic and nitrogen deposition gradients. Tree Physiology 37: 4 – 17.
dc.identifier.citedreferenceBredemeier, M., K. Blanck, Y. J. Xu, A. Tietema, W. A. Boxman, B. Emmett, F. Moldan, P. Gundersen, P. Schleppi, and R. F. Wright. 1998. Input‐output budgets at the NITREX sites. Forest Ecology and Management 101: 57 – 64.
dc.identifier.citedreferenceBrzostek, E. R., D. Dragoni, H. P. Schmid, A. F. Rahman, D.   Sims, C. A. Wayson, D. J. Johnson, and R. P. Phillips. 2014. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Global Change Biology 20: 2531 – 2539.
dc.identifier.citedreferenceBurton, A. J., C. W. Ramm, K. S. Pregitzer, and D. D. Reed. 1991. Use of multivariate methods in forest research site selection. Canadian Journal of Forest Research 21: 1573 – 1580.
dc.identifier.citedreferenceBurton, A. J., K. S. Pregitzer, J.N. Crawford, G. P. Zogg, and D. R. Zak. 2004. Simulated chronic NO3‐ addition reduces soil respiration in northern hardwood forests. Global Change Biology 10: 1080 – 1091.
dc.identifier.citedreferenceCanham, C. D., and R. Q. Thomas. 2010. Frequency, not relative abundance, of temperate tree species varies along climate gradients in eastern North America. Ecology 91: 3433 – 3440.
dc.identifier.citedreferenceChadwick, O. A., L. A. Derry, P. M. Vitousek, B. J. Huebert, and L. O. Hedin. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397: 491 – 497.
dc.identifier.citedreferenceClark, J. S., et al. 2016. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biology 22: 2329 – 2352.
dc.identifier.citedreferenceDe Marco, A., C. Proietti, I. Cionni, R. Fischer, A. Screpanti, and M. Vitale. 2014. Future impacts of nitrogen deposition and climate change scenarios on forest crown defoliation. Environmental Pollution 194: 171 – 180.
dc.identifier.citedreferenceDeVisser, P. H. B., W. G. Keltjens, and G. R. Findenegg. 1996. Transpiration and drought resistance of Douglas‐fir seedlings exposed to excess ammonium. Trees—Structure and Function 10: 301 – 307.
dc.identifier.citedreferenceDziedek, C., G. von Oheimb, L. Calvo, A. Fichtner, W. U. Kriebitzsch, E. Marcos, W. T. Pitz, and W. Hardtle. 2016. Does excess nitrogen supply increase the drought sensitivity of European beech ( Fagus sylvatica L.) seedlings? Plant Ecology 217: 393 – 405.
dc.identifier.citedreferenceFenn, M. E., M. A. Poth, J. D. Aber, J. S. Baron, B. T. Bormann, D. W. Johnson, A. D. Lemly, S. G. McNutlty, D. F. Ryan, and R. Stottlemyer. 1998. Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecological Applications 8: 706 – 733.
dc.identifier.citedreferenceFerretti, M., et al. 2014. On the tracks of Nitrogen deposition effects on temperate forests at their southern European range – an observational study from Italy. Global Change Biology 20: 3423 – 3438.
dc.identifier.citedreferenceGarcía, D., R. Zamora, J. M. Gómez, P. Jordano, and J. A. Hódar. 2000. Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. Journal of Ecology 88: 436 – 446.
dc.identifier.citedreferenceGavin, D. G., B. Beckage, and B. Osborne. 2008. Forest dynamics and the growth decline of red spruce and sugar maple on Bolton Mountain, Vermont: a comparison of modeling methods. Canadian Journal of Forest Research 38: 2635 – 2649.
dc.identifier.citedreferenceGessler, A., M. Schaub, and N. G. McDowell. 2017. The role of nutrients in drought‐induced tree mortality and recovery. New Phytologist 214: 513 – 520.
dc.identifier.citedreferenceGunderson, C. A., R. J. Norby, and S. D. Wullschleger. 2000. Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern populations of Acer saccharum: laboratory and field evidence. Tree Physiology 20: 87 – 96.
dc.identifier.citedreferenceHandler, S., et al. 2014. Michigan Forest Ecosystem Vulnerability Assessment and Synthesis: A report from the Northwoods Climate Change Response Framework. General Technical Report NRS‐129. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, Pennsylvania, USA.
dc.identifier.citedreferenceHember, R. A., W. A. Kurz, and N. C. Coops. 2017. Relationships between individual‐tree mortality and water‐balance variables indicate positive trends in water stress‐induced tree mortality across North America. Global Change Biology 23: 1691 – 1710.
dc.identifier.citedreferenceHost, G. E., and K. S. Pregitzer. 1991. Ecological species groups for upland forest ecosystems of northwestern Lower Michigan. Forest Ecology and Management 43: 87 – 102.
dc.identifier.citedreferenceHungate, B. A., J. S. Dukes, M. R. Shaw, Y. Luo, and C. B. Field. 2003. Nitrogen and climate change. Science 302: 1512.
dc.identifier.citedreferenceHyvöen, R., T. Persson, S. Andersson, B. Olsson, G. Agren, and S. Linder. 2008. Impact of long‐term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89: 121 – 137.
dc.identifier.citedreferenceIbáñez, I., D. Zak, A. Burton, and K. Pregitzer. 2016. Chronic nitrogen deposition alters tree allometric relationships: implications for biomass production and carbon storage. Ecological Applications 26: 913 – 925.
dc.identifier.citedreferenceIzuta, T., T. Yamaoka, T. Nakaji, T. Yonekura, M Yonekura, R Funada, T. Koike, and T. Totsuka. 2004. Growth, net photosynthesis and leaf nutrient status of Fagus crenata seedlings grown in brown forest soil acidified with H 2 SO 4 or HNO 3 solution. Trees 18: 677 – 685.
dc.identifier.citedreferenceJump, A. S., J. M. Hunt, and J. Peñuelas. 2006. Rapid climate change‐related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology 12: 2163 – 2174.
dc.identifier.citedreferenceKlos, R. J., G. G. Wang, W. L. Baurle, and J. L. Rieck. 2009. Drought impact on forest growth and mortality in the southeast USA: and analysis using forest health and monitoring data. Ecological Applications 19: 699 – 708.
dc.identifier.citedreferenceKobe, R. K. 2006. Sapling growth as a function of light and landscape‐level variation in soil water and foliar nitrogen in northern Michigan. Oecologia 147: 119 – 133.
dc.identifier.citedreferenceKobe, R. K., T. W. Baribault, and E. K. Holste. 2014. Tree performance across gradients of soil resources availability. Pages 309 – 340 in D. A. Coomes, D. Burslem, and E. D. Simonson, editors. Forest and global change. Cambridge University Press, New York, NY, USA.
dc.identifier.citedreferenceLambers, H., F. S. Chapin, and T. L. Pons. 2008. Plant physiological ecology. Second edition. Springer, New York, New York, USA.
dc.identifier.citedreferenceLeBauer, D. S., and K. K. Treseder. 2008. Nitrogen limitation of the net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89: 371 – 379.
dc.identifier.citedreferenceLévesque, M., L. Walthert, and P. Weber. 2016. Soil nutrients influence growth response of temperate tree species to drought. Journal of Ecology 104: 377 – 387.
dc.identifier.citedreferenceLi, Y., B. A. Schichtel, J. T. Walker, D. B. Schwede, X. Chen, C. M. B. Lehmann, M. A. Puchalski, D. A. Gay, and J. L. Collett. 2016. Increasing importance of deposition of reduced nitrogen in the United States. Proceedings of the National Academy of Sciences USA 113: 5874 – 5879.
dc.identifier.citedreferenceLiénard, J., J. Harrison, and N. Strigul. 2016. US forest response to projected climate‐related stress: a tolerance perspective. Global Change Biology 22: 2875 – 2886.
dc.identifier.citedreferenceLittle, E. L. 1971. Atlas of United States trees, volume 1, conifers and important hardwoods. U.S. Department of Agriculture, Forest Service.
dc.identifier.citedreferenceLoehle, C., C. Idso, and T. B. Wigley. 2016. Physiological and ecological factors influencing recent trends in United States forest health responses to climate change. Forest Ecology and Management 363: 179 – 189.
dc.identifier.citedreferenceMaggard, A. O., R. E. Will, D. S. Wilson, and C. R. Meek. 2016. The effects of decreased water availability on loblolly pine ( Pinus taeda L.) productivity and the interaction between fertilizer and drought. Pages 355 – 357 in Proceedings of the 18th biennial southern silvicultural research conference. General Technical Report SRS‐212. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, North Carolina, USA.
dc.identifier.citedreferenceMagnani, F., et al. 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447: 849 – 851.
dc.identifier.citedreferenceMartin‐Benito, D., V. Kint, M. del Río, B. Muys, and I. Cañellas. 2011. Growth responses of West‐Mediterranean Pinus nigra to climate change are modulated by competition and productivity: Past trends and future perspectives. Forest Ecology and Management 262: 1030 – 1040.
dc.identifier.citedreferenceManzoni, S., G. Katul, and A. Porporato. 2014. A dynamical‐system perspective on plant hydraulic failure. Water Resources Research 50: 5170 – 5183.
dc.identifier.citedreferenceMarcora, P., I. Hensen, D. Renison, P. Seltmann, and K. Wesche. 2008. The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation. Diversity and Distributions 14: 630 – 636.
dc.identifier.citedreferenceMcDowell, N., et al. 2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist 178: 719 – 739.
dc.identifier.citedreferenceNagakura, J., S. Kaneko, M. Takahashi, and T. Tange. 2008. Nitrogen promotes water consumption in seedlings of Cryptomeria japonica but not in Chamaecyparis obtusa. Forest Ecology and Management 255: 2533 – 2541.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.