Show simple item record

A decision analytic model to guide early‐stage government regulatory action: Applications for synthetic biology

dc.contributor.authorTrump, Benjamin
dc.contributor.authorCummings, Christopher
dc.contributor.authorKuzma, Jennifer
dc.contributor.authorLinkov, Igor
dc.date.accessioned2018-03-07T18:23:07Z
dc.date.available2019-05-13T14:45:23Zen
dc.date.issued2018-03
dc.identifier.citationTrump, Benjamin; Cummings, Christopher; Kuzma, Jennifer; Linkov, Igor (2018). "A decision analytic model to guide early‐stage government regulatory action: Applications for synthetic biology." Regulation & Governance 12(1): 88-100.
dc.identifier.issn1748-5983
dc.identifier.issn1748-5991
dc.identifier.urihttps://hdl.handle.net/2027.42/142416
dc.description.abstractSynthetic biology (SB) involves the alteration of living cells and biomolecules for specific purposes. Products developed using these approaches could have significant societal benefits, but also pose uncertain risks to human and environmental health. Policymakers currently face decisions regarding how stringently to regulate and monitor various SB applications. This is a complex task, in which policymakers must balance uncertain economic, political, social, and health‐related decision factors associated with SB use. We argue that formal decision analytical tools could serve as a method to integrate available evidence‐based information and expert judgment on the impacts associated with SB innovations, synthesize that information into quantitative indicators, and serve as the first step toward guiding governance of these emerging technologies. For this paper, we apply multi‐criteria decision analysis to a specific case of SB, a micro‐robot based on biological cells called “cyberplasm.” We use data from a Delphi study to assess cyberplasm governance options and demonstrate how such decision tools may be used for assessments of SB oversight.
dc.publisherIRGC
dc.publisherWiley Periodicals, Inc.
dc.subject.otheruncertainty
dc.subject.otheremerging technology
dc.subject.otherrisk governance
dc.subject.othersynthetic biology
dc.subject.othertechnology governance
dc.titleA decision analytic model to guide early‐stage government regulatory action: Applications for synthetic biology
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPolitical Science
dc.subject.hlbtoplevelGovernment, Politics and Law
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142416/1/rego12142.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142416/2/rego12142_am.pdf
dc.identifier.doi10.1111/rego.12142
dc.identifier.sourceRegulation & Governance
dc.identifier.citedreferenceSaltelli A, Tarantola S, Chan K ( 1999 ) A Role for Sensitivity Analysis in Presenting the Results from MCDA Studies to Decision Makers. Journal of Multi‐Criteria Decision Analysis 8, 139 – 145.
dc.identifier.citedreferenceGibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA et al. ( 2010 ) Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science 329, 52 – 56.
dc.identifier.citedreferenceGrubišić V, Parpura V ( 2015 ) Diversity in the Utilization of Glucose and Lactate in Synthetic Mammalian Myotubes Generated by Engineered Configurations of MyoD and E12 in Otherwise Non‐differentiation Growth Conditions. Biomaterials, 43, 50 – 60.
dc.identifier.citedreferenceHutchison CA III, Chuang RY, Noskov VN, Assad‐Garcia N, Deerinck TJ, Ellisman MH et al. ( 2016 ) Design and Synthesis of a Minimal Bacterial Genome. Science 351, 1414‐U73.
dc.identifier.citedreferenceIRGC (International Risk Governance Council) ( 2006 ) Risk Governance: Toward an Integrative Approach. IRGC, Geneva. [Last accessed 14 November 2016] Available from URL: https://www.irgc.org/IMG/pdf/IRGC_WP_No_1_Risk_Governance__reprinted_version_.pdf
dc.identifier.citedreferenceIRGC (International Risk Governance Councile) ( 2015 ). IRGC Guidelines for Emerging Risk Governance. IRGC, Geneva. [Last accessed 1 April 2016] Available from URL: http://www.mmc.com/content/dam/mmc-web/Global-Risk-Center/Files/IRGC-Emerging-Risk-WEB-31Mar.pdf.
dc.identifier.citedreferenceKuzma J, Najmaie P, Larson J ( 2009 ) Evaluating Oversight Systems for Emerging Technologies: A Case Study of Genetically Engineered Organisms. Journal of Law Medicine & Ethics 37, 546 – 586.
dc.identifier.citedreferenceKuzma J, Paradise J, Ramachandran G, Kim J, Kokotovich A, Wolf SM ( 2008 ) An Integrated Approach to Oversight Assessment for Emerging Technologies. Risk Analysis 28, 1197 – 1220.
dc.identifier.citedreferenceKuzma J, Tanji T ( 2010 ) Unpackaging Synthetic Biology: Identification of Oversight Policy Problems and Options. Regulation & Governance 4, 92 – 112.
dc.identifier.citedreferenceLinkov I, Bates ME, Trump BD, Seager TP, Chappell MA, Keisler JM ( 2013 ) For Nanotechnology Decisions, Use Decision Analysis. Nano Today 8, 5 – 10.
dc.identifier.citedreferenceLinkov I, Moberg E ( 2011 ) Multi‐criteria Decision Analysis: Environmental Applications and Case Studies. CRC Press, Boca Raton, FL.
dc.identifier.citedreferenceLinkov I, Rosoff H, Valverde LJ, Bates ME, Trump B, Friedman D et al. ( 2012 ) Civilian Response Corps Force Review: The Application of Multi‐criteria Decision Analysis to Prioritize Skills Required for Future Diplomatic Missions. Journal of Multi‐Criteria Decision Analysis 19, 155 – 168.
dc.identifier.citedreferenceLinkov I, Satterstrom FK, Kiker G, Batchelor C, Bridges T, Ferguson E ( 2006 ) From Comparative Risk Assessment to Multi‐criteria Decision Analysis and Adaptive Management: Recent Developments and Applications. Environment International 32, 1072 – 1093.
dc.identifier.citedreferenceLinstone HA, Turoff M (eds) ( 2002 ) The Delphi Method: Techniques and Applications. Addison‐Wesley Publishing Company Inc, Reading, M.A.
dc.identifier.citedreferenceMohan M, Trump BD, Bates ME, Monica JC Jr, Linkov I ( 2012 ) Integrating Legal Liabilities in Nanomanufacturing Risk Management. Environmental Science & Technology 46, 7955 – 7962.
dc.identifier.citedreferencePatton MQ ( 2005 ) Qualitative Research. Encyclopedia of Statistics in Behavioral Science. John Wiley & Sons Ltd., New York, NY.
dc.identifier.citedreferenceStewart TJ ( 2005 ) Dealing with uncertainties in MCDA. In: Figueira J. et al. (eds) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 445 – 466. Springer, New York.
dc.identifier.citedreferenceSubramanian V, Semenzin E, Hristozov D, Zabeo A, Malsch I, McAlea E et al. ( 2016 ) Sustainable Nanotechnology Decision Support System: Bridging Risk Management, Sustainable Innovation and Risk Governance. Journal of Nanoparticle Research 18.Article 89
dc.identifier.citedreferenceSzondy D ( 2012 ) “Interface Scaffolds” Could Wire Prosthetics Directly into Amputees’ Nervous Systems. New Atlas 5 Mar 2012. [Last accessed 1 September 2016] Available from URL: http://www.gizmag.com/nerve‐prostheses‐interface‐scaffolds/21646/
dc.identifier.citedreferenceTucker JB, Zilinskas RA ( 2006 ) The Promise and Perils of Synthetic Biology. New Atlantis, 12, 25 – 45.
dc.identifier.citedreferenceVoigt CA ( 2012 ) Synthetic Biology: Bacteria Collaborate to Sense Arsenic. Nature 481, 33 – 34.
dc.identifier.citedreferenceWoodrow Wilson Center ( 2016 ) Cyberplasm. Synthetic Biology Project. [Accessed 14 November 2016] Available from URL: http://www.synbioproject.org/cpi/applications/cyberplasm/.
dc.identifier.citedreferenceYatsalo B, Didenko V, Gritsyuk S, Sullivan T ( 2015 ) Decerns: A Framework for Multi‐criteria Decision Analysis. International Journal of Computational Intelligence Systems 8, 467 – 489.
dc.identifier.citedreferenceYatsalo B, Kiker G, Kim J, Bridges T, Seager T, Gardner K et al. ( 2007 ) Application of Multicriteria Decision Analysis Tools to Two Contaminated Sediment Case Studies. Integrated Environmental Assessment and Management, 3, 223 – 233.
dc.identifier.citedreferenceBates ME, Grieger KD, Trump BD, Keisler JM, Plourde KJ, Linkov I ( 2016 ) Emerging Technologies for Environmental Remediation: Integrating Data and Judgment. Environmental Science & Technology 50, 349 – 358.
dc.identifier.citedreferenceBelton V ( 1986 ) A Comparison of the Analytic Hierarchy Process and a Simple Multi‐attribute Value Function. European Journal of Operational Research 26, 7 – 21.
dc.identifier.citedreferenceBerube D, Cummings C, Cacciatore M, Scheufele D, Kalin J ( 2011 ) Characteristics and Classification of Nanoparticles: Expert Delphi Survey. Nanotoxicology 5, 236 – 243.
dc.identifier.citedreferenceCalvert J, Martin P ( 2009 ) The Role of Social Scientists in Synthetic Biology. EMBO Reports, 10, 201 – 204.
dc.identifier.citedreferenceChurch GM, Elowitz MB, Smolke CD, Voigt CA, Weiss R ( 2014 ) Realizing the Potential of Synthetic Biology. Nature Reviews Molecular Cell Biology 15, 289 – 294.
dc.identifier.citedreferencedeLorenzo V ( 2010 ) Environmental Biosafety in the Age of Synthetic Biology: Do We Really Need a Radical New Approach? BioEssays 32, 926 – 931.
dc.identifier.citedreferenceFranklin KK, Hart JK ( 2007 ) Idea generation and exploration: benefits and limitations of the policy Delphi research method. Innovative Higher Education 31, 237 – 246.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.