Show simple item record

One‐Way Particle Transport Using Oscillatory Flow in Asymmetric Traps

dc.contributor.authorLee, Jaesung
dc.contributor.authorBurns, Mark A.
dc.date.accessioned2018-03-07T18:23:47Z
dc.date.available2019-05-13T14:45:23Zen
dc.date.issued2018-03
dc.identifier.citationLee, Jaesung; Burns, Mark A. (2018). "One‐Way Particle Transport Using Oscillatory Flow in Asymmetric Traps." Small 14(9): n/a-n/a.
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/2027.42/142443
dc.description.abstractOne challenge of integrating of passive, microparticles manipulation techniques into multifunctional microfluidic devices is coupling the continuous‐flow format of most systems with the often batch‐type operation of particle separation systems. Here, a passive fluidic technique—one‐way particle transport—that can conduct microparticle operations in a closed fluidic circuit is presented. Exploiting pass/capture interactions between microparticles and asymmetric traps, this technique accomplishes a net displacement of particles in an oscillatory flow field. One‐way particle transport is achieved through four kinds of trap–particle interactions: mechanical capture of the particle, asymmetric interactions between the trap and the particle, physical collision of the particle with an obstacle, and lateral shift of the particle into a particle–trapping stream. The critical dimensions for those four conditions are found by numerically solving analytical mass balance equations formulated using the characteristics of the flow field in periodic obstacle arrays. Visual observation of experimental trap–particle dynamics in low Reynolds number flow (<0.01) confirms the validity of the theoretical predictions. This technique can transport hundreds of microparticles across trap rows in only a few fluid oscillations (<500 ms per oscillation) and separate particles by their size differences.Passive fluidic particle transport using asymmetric traps in nonacoustic oscillatory flow is developed. The conditions to achieve this technique are based on the mass balance of fluid flows, the theory of deterministic lateral displacement of microparticles, and experimental validation. This technique can transport or separate microparticles in a closed chamber and facilitate the integration of the microparticle system into portable lab‐on‐a‐chip devices.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroscillatory flow
dc.subject.otherpassive
dc.subject.othermicroparticles
dc.subject.othermicrofluidics
dc.titleOne‐Way Particle Transport Using Oscillatory Flow in Asymmetric Traps
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142443/1/smll201702724-sup-0001-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142443/2/smll201702724.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142443/3/smll201702724_am.pdf
dc.identifier.doi10.1002/smll.201702724
dc.identifier.sourceSmall
dc.identifier.citedreferenceJ. Ramón‐Azcón, T. Yasukawa, H. J. Lee, T. Matsue, F. Sánchez‐Baeza, M.‐P. Marco, F. Mizutani, Biosens. Bioelectron. 2010, 25, 1928.
dc.identifier.citedreferenceN. Beyor, L. Yi, T. S. Seo, R. A. Mathies, Anal. Chem. 2009, 81, 3523.
dc.identifier.citedreferenceC.‐H. Wang, K.‐Y. Lien, T.‐Y. Wang, T.‐Y. Chen, G.‐B. Lee, Biosens. Bioelectron. 2011, 26, 2045.
dc.identifier.citedreferenceT. Maleki, T. Fricke, J. T. Quesenberry, P. W. Todd, J. F. Leary, Proc. SPIE 2012, 8251, https://doi.org/10.1117/12.909051.
dc.identifier.citedreferenceB. Çetin, D. Li, Electrophoresis 2011, 32, 2410.
dc.identifier.citedreferenceL. Cui, T. Zhang, H. Morgan, J. Micromech. Microeng. 2002, 12, 7.
dc.identifier.citedreferenceJ. D. Yantzi, J. T. W. Yeow, S. S. Abdallah, Biosens. Bioelectron. 2006, 22, 2539.
dc.identifier.citedreferenceJ. Ramón‐Azcón, T. Yasukawa, F. Mizutani, Anal. Chem. 2011, 83, 1053.
dc.identifier.citedreferenceJ. Ramón‐Azcón, T. Yasukawa, F. Mizutani, Biosens. Bioelectron. 2011, 28, 443.
dc.identifier.citedreferenceZ. Zou, S. Lee, C. H. Ahn, IEEE Sens. J. 2008, 8, 527.
dc.identifier.citedreferenceJ. Friend, L. Y. Yeo, Rev. Mod. Phys. 2011, 83, 647.
dc.identifier.citedreferenceL. Y. Yeo, J. R. Friend, Annu. Rev. Fluid Mech. 2014, 46, 379.
dc.identifier.citedreferenceP. Glynne‐Jones, R. J. Boltryk, M. Hill, F. Zhang, L. Dong, J. S. Wilkinson, T. Melvin, N. R. Harris, T. Brown, Anal. Sci. 2009, 25, 285.
dc.identifier.citedreferenceX. Ding, S.‐C. S. Lin, B. Kiraly, H. Yue, S. Li, I.‐K. Chiang, J. Shi, S. J. Benkovic, T. J. Huang, Proc. Natl. Acad. Sci. USA 2012, 109, 11105.
dc.identifier.citedreferenceF. Guo, Z. Mao, Y. Chen, Z. Xie, J. P. Lata, P. Li, L. Ren, J. Liu, J. Yang, M. Dao, S. Suresh, T. J. Huang, Proc. Natl. Acad. Sci. USA 2016, 113, 1522.
dc.identifier.citedreferenceA. R. Rezk, L. Y. Yeo, J. R. Friend, Langmuir 2014, 30, 11243.
dc.identifier.citedreferenceG. Destgeer, H. J. Sung, Lab Chip 2015, 15, 2722.
dc.identifier.citedreferenceG. Destgeer, H. Cho, B. H. Ha, J. H. Jung, J. Park, H. J. Sung, Lab Chip 2016, 16, 660.
dc.identifier.citedreferenceJ. Lee, M. A. Burns, RSC Adv. 2015, 5, 3358.
dc.identifier.citedreferenceK. Loutherback, J. Puchalla, R. H. Austin, J. C. Sturm, Phys. Rev. Lett. 2009, 102, 045301.
dc.identifier.citedreferenceD. W. Inglis, J. A. Davis, R. H. Austin, J. C. Sturm, Lab Chip 2006, 6, 655.
dc.identifier.citedreferenceL. R. Huang, E. C. Cox, R. H. Austin, J. C. Sturm, Science 2004, 304, 987.
dc.identifier.citedreferenceJ. McGrath, M. Jimenez, H. Bridle, Lab Chip 2014, 14, 4139.
dc.identifier.citedreferenceD. Di Carlo, Lab Chip 2009, 9, 3038.
dc.identifier.citedreferenceH. Amini, W. Lee, D. Di Carlo, Lab Chip 2014, 14, 2739.
dc.identifier.citedreferenceM. Yamada, M. Nakashima, M. Seki, Anal. Chem. 2004, 76, 5465.
dc.identifier.citedreferenceM. Yamada, M. Seki, Lab Chip 2005, 5, 1233.
dc.identifier.citedreferenceS. Choi, J.‐K. Park, Lab Chip 2007, 7, 890.
dc.identifier.citedreferenceS. Choi, S. Song, C. Choi, J.‐K. Park, Lab Chip 2007, 7, 1532.
dc.identifier.citedreferenceX. Xuan, J. Zhu, C. Church, Microfluid. Nanofluid. 2010, 9, 1.
dc.identifier.citedreferenceA. J. Mach, J. H. Kim, A. Arshi, S. C. Hur, D. Di Carlo, Lab Chip 2011, 11, 2827.
dc.identifier.citedreferenceD. R. Gossett, H. T. K. Tse, J. S. Dudani, K. Goda, T. A. Woods, S. W. Graves, D. Di Carlo, Small 2012, 8, 2757.
dc.identifier.citedreferenceE. Sollier, H. Amini, D. E. Go, P. A. Sandoz, K. Owsley, D. Di Carlo, Microfluid. Nanofluid. 2015, 19, 53.
dc.identifier.citedreferenceD. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, D. Di Carlo, Anal. Bioanal. Chem. 2010, 397, 3249.
dc.identifier.citedreferenceC. Jin, S. M. McFaul, S. P. Duffy, X. Deng, P. Tavassoli, P. C. Black, H. Ma, Lab Chip 2014, 14, 32.
dc.identifier.citedreferenceY. Chen, P. Li, P.‐H. Huang, Y. Xie, J. D. Mai, L. Wang, N.‐T. Nguyen, T. J. Huang, Lab Chip 2014, 14, 626.
dc.identifier.citedreferenceX. Mao, T. J. Huang, Lab Chip 2012, 12, 4006.
dc.identifier.citedreferenceS. M. McFaul, B. K. Lin, H. Ma, Lab Chip 2012, 12, 2369.
dc.identifier.citedreferenceH. T. K. Tse, D. R. Gossett, Y. S. Moon, M. Masaeli, M. Sohsman, Y. Ying, K. Mislick, R. P. Adams, J. Rao, D. Di Carlo, Sci. Transl. Med. 2013, 5, 212ra163.
dc.identifier.citedreferenceY. Zheng, J. Nguyen, Y. Wei, Y. Sun, Lab Chip 2013, 13, 2464.
dc.identifier.citedreferenceO. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer‐Friedrich, J. Guck, Nat. Methods 2015, 12, 199.
dc.identifier.citedreferenceY. Deng, S. P. Davis, F. Yang, K. S. Paulsen, M. Kumar, R. Sinnott DeVaux, X. Wang, D. S. Conklin, A. Oberai, J. I. Herschkowitz, A. J. Chung, Small 2017, 13, 1700705.
dc.identifier.citedreferenceD. R. Gossett, H. T. K. Tse, S. A. Lee, Y. Ying, A. G. Lindgren, O. O. Yang, J. Rao, A. T. Clark, D. Di Carlo, Proc. Natl. Acad. Sci. USA 2012, 109, 7630.
dc.identifier.citedreferenceV. Srinivasan, V. K. Pamula, R. B. Fair, Lab Chip 2004, 4, 310.
dc.identifier.citedreferenceR. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, V. Pamula, Lab Chip 2008, 8, 2091.
dc.identifier.citedreferenceG. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, M. Hoorfar, Sensors 2015, 15, 30011.
dc.identifier.citedreferenceD. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Chem. Soc. Rev. 2010, 39, 1153.
dc.identifier.citedreferenceA. van Reenen, A. M. de Jong, J. M. J. den Toonder, M. W. J. Prins, Lab Chip 2014, 14, 1966.
dc.identifier.citedreferenceJ. Choi, K. W. Oh, J. H. Thomas, W. R. Heineman, H. B. Halsall, J. H. Nevin, A. J. Helmicki, H. T. Henderson, C. H. Ahn, Lab Chip 2002, 2, 27.
dc.identifier.citedreferenceC.‐H. Chiou, D. J. Shin, Y. Zhang, T.‐H. Wang, Biosens. Bioelectron. 2013, 50, 91.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.