Show simple item record

Why I believe nanoparticles are crucial as a carrier for targeted drug delivery

dc.contributor.authorBaker, James R.
dc.date.accessioned2018-03-07T18:23:57Z
dc.date.available2018-03-07T18:23:57Z
dc.date.issued2013-09
dc.identifier.citationBaker, James R. (2013). "Why I believe nanoparticles are crucial as a carrier for targeted drug delivery." Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 5(5): 423-429.
dc.identifier.issn1939-5116
dc.identifier.issn1939-0041
dc.identifier.urihttps://hdl.handle.net/2027.42/142452
dc.description.abstractNanoparticles are the only materials small enough to target cells in the body, and therefore are crucial to targeted drug delivery. Issues with the synthesis, consistency, and bioactivity of these molecules are still being addressed, but base on current proof of concept studies there is a reason to believe that the ‘holy grail’ of targeted drug delivery might someday be achieved using nanoparticle‐based systems. WIREs Nanomed Nanobiotechnol 2013. doi: 10.1002/wnan.1226This article is categorized under:Therapeutic Approaches and Drug Discovery > Emerging TechnologiesDiagnostic Tools > In Vitro Nanoparticle-Based SensingTherapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease
dc.publisherJohn Wiley & Sons, Inc.
dc.titleWhy I believe nanoparticles are crucial as a carrier for targeted drug delivery
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142452/1/wnan1226.pdf
dc.identifier.doi10.1002/wnan.1226
dc.identifier.sourceWiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology
dc.identifier.citedreferenceKukowska‐Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR Jr. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 2005, 65: 5317 – 5324.
dc.identifier.citedreferenceMajoros IJ, Williams CR, Becker A, Baker JR Jr. Methotrexate delivery via folate targeted dendrimer‐based nanotherapeutic platform. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009, 1: 502 – 510.
dc.identifier.citedreferenceMyc A, Kukowska‐Latallo J, Cao P, Swanson B, Battista J, Dunham T, Baker JR Jr. Targeting the efficacy of a dendrimer‐based nanotherapeutic in heterogeneous xenograft tumors in vivo. Anticancer Drugs 2010, 21: 186 – 192.
dc.identifier.citedreferenceShukla R, Thomas TP, Desai AM, Kotlyar A, Park SJ, Baker JR. HER2 specific delivery of methotrexate by dendrimer conjugated anti‐HER2 mAb. Nanotechnology 2008, 19: 295102.
dc.identifier.citedreferenceShukla R, Thomas TP, Peters J, Kotlyar A, Myc A, Baker JR Jr. Tumor angiogenic vasculature targeting with PAMAM dendrimer‐RGD conjugates. Chem Commun (Camb) 2005, 46: 5739 – 5741.
dc.identifier.citedreferenceMajoros IJ, Thomas TP, Mehta CB, Baker JR Jr. Poly(amidoamine) dendrimer‐based multifunctional engineered nanodevice for cancer therapy. J Med Chem 2005, 48: 5892 – 5899.
dc.identifier.citedreferenceThomas TP, Goonewardena SN, Majoros IJ, Kotlyar A, Cao Z, Leroueil PR, Baker JR Jr. Folate‐targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum 2011, 63: 2671 – 2680.
dc.identifier.citedreferenceMullen DG, Fang M, Desai A, Baker JR, Orr BG, Banaszak Holl MM. A quantitative assessment of nanoparticle‐ligand distributions: implications for targeted drug and imaging delivery in dendrimer conjugates. ACS Nano 2010, 4: 657 – 670.
dc.identifier.citedreferenceHuang B, Desai A, Zong H, Tang S, Leroueil P, Baker JR Jr. Copper‐free click conjugation of methotrexate to a PAMAM dendrimer platform. Tetrahedron Lett 2011, 52: 1411 – 1414.
dc.identifier.citedreferenceZong H, Thomas TP, Lee KH, Desai AM, Li MH, Kotlyar A, Zhang Y, Leroueil PR, Gam JJ, Banaszak Holl MM, et al. Bifunctional PAMAM dendrimer conjugates of folic acid and methotrexate with defined ratio. Biomacromolecules 2012, 13: 982 – 991.
dc.identifier.citedreferenceHuang B, Kukowska‐Latallo JF, Tang S, Zong H, Johnson KB, Desai A, Gordon CL, Leroueil PR, Baker JR Jr. The facile synthesis of multifunctional PAMAM dendrimer conjugates through copper‐free click chemistry. Bioorg Med Chem Lett 2012, 22: 3152 – 3156.
dc.identifier.citedreferenceChrastina A, Massey KA, Schnitzer JE. Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2011, 3: 421 – 437.
dc.identifier.citedreferencePan D, Sanyal N, Schmieder AH, Senpan A, Kim B, Yang X, Hu G, Allen JS, Gross RW, Wickline SA, et al. Antiangiogenic nanotherapy with lipase‐labile Sn‐2 fumagillin prodrug. Nanomedicine 2012, 10: 1507 – 1519.
dc.identifier.citedreferenceZhou HF, Yan H, Senpan A, Wickline SA, Pan D, Lanza GM, Pham CT. Suppression of inflammation in a mouse model of rheumatoid arthritis using targeted lipase‐labile fumagillin prodrug nanoparticles. Biomaterials 2012, 33: 8632 – 8640.
dc.identifier.citedreferenceZamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, Nel A, Panaro NJ, Grodzinski P. Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res 2012, 18: 3229 – 3241.
dc.identifier.citedreferenceWoyach JA, Johnson AJ, Byrd JC. The B‐cell receptor signaling pathway as a therapeutic target in CLL. Blood 2012, 120: 1175 – 1184.
dc.identifier.citedreferenceLi C, Wallace S. Polymer‐drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev 2008, 60: 886 – 898.
dc.identifier.citedreferenceRaguz S, Yagüe E. Resistance to chemotherapy: new treatments and novel insights into an old problem. Br J Cancer 2008, 99: 387 – 391.
dc.identifier.citedreferenceColson YL, Grinstaff MW. Biologically responsive polymeric nanoparticles for drug delivery. Adv Mater 2012, 24: 3878 – 3886.
dc.identifier.citedreferenceCheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 2012, 338: 903 – 910.
dc.identifier.citedreferencePenner N, Xu L, Prakash C. Radiolabeled absorption, distribution, metabolism, and excretion studies in drug development: why, when, and how? Chem Res Toxicol 2012, 25: 513 – 531.
dc.identifier.citedreferenceMajoros IJ, Myc A, Thomas T, Mehta CB, Baker JR Jr. PAMAM dendrimer‐based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 2006, 7: 572 – 579.
dc.identifier.citedreferenceSreeramoju P, Libutti SK. Strategies for targeting tumors and tumor vasculature for cancer therapy. Adv Genet 2010, 69: 135 – 152.
dc.identifier.citedreferenceHeneweer C, Gendy SE, Peate‐Medina O. Liposomes and inorganic nanoparticles for drug delivery and cancer imaging. Ther Deliv 2012, 3: 645 – 656.
dc.identifier.citedreferenceRippe B, Davies S. Permeability of peritoneal and glomerular capillaries: what are the differences according to pore theory? Perit Dial Int 2011, 31: 249 – 258.
dc.identifier.citedreferenceSun X, Xing L, Ling CC, Li GC. The effect of mild temperature hyperthermia on tumour hypoxia and blood perfusion: relevance for radiotherapy, vascular targeting and imaging. Int J Hyperthermia 2010, 26: 224 – 231.
dc.identifier.citedreferenceUlasov AV, Khramtsov YV, Trusov GA, Rosenkranz AA, Sverdlov ED, Sobolev AS. Properties of PEI‐based polyplex nanoparticles that correlate with their transfection efficacy. Mol Ther 2011, 19: 103 – 112.
dc.identifier.citedreferenceArosio D, Casagrande C, Manzoni L. Integrin‐mediated drug delivery in cancer and cardiovascular diseases with peptide‐functionalized nanoparticles. Curr Med Chem 2012, 19: 3128 – 3151.
dc.identifier.citedreferenceRawat A, Vaidya B, Khatri K, Goyal AK, Gupta PN, Mahor S, Paliwal R, Rai S, Vyas SP. Targeted intracellular delivery of therapeutics: an overview. Pharmazie 2007, 62: 643 – 658.
dc.identifier.citedreferenceQuintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I, Patri AK, Thomas T, Mule J, Baker JR Jr. Design and function of a dendrimer‐based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 2002, 19: 1310 – 1316.
dc.identifier.citedreferenceMcNerny DQ, Leroueil PR, Baker JR. Understanding specific and nonspecific toxicities: a requirement for the development of dendrimer‐based pharmaceuticals. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010, 2: 249 – 59.
dc.identifier.citedreferenceMcNerny DQ, Kukowska‐Latallo JF, Mullen DG, Wallace JM, Desai AM, Shukla R, Huang B, Banaszak Holl MM, Baker JR Jr. RGD dendron bodies; synthetic avidity agents with defined and potentially interchangeable effector sites that can substitute for antibodies. Bioconjug Chem 2009, 20: 1853 – 1859.
dc.identifier.citedreferenceChoi Y, Thomas T, Kotlyar A, Islam MT, Baker JR Jr. Synthesis and functional evaluation of DNA‐assembled polyamidoamine dendrimer clusters for cancer cell‐specific targeting. Chem Biol 2005, 12: 35 – 43.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.