Show simple item record

Measures of Model Performance Based On the Log Accuracy Ratio

dc.contributor.authorMorley, S. K.
dc.contributor.authorBrito, T. V.
dc.contributor.authorWelling, D. T.
dc.date.accessioned2018-03-07T18:24:00Z
dc.date.available2019-03-01T21:00:17Zen
dc.date.issued2018-01
dc.identifier.citationMorley, S. K.; Brito, T. V.; Welling, D. T. (2018). "Measures of Model Performance Based On the Log Accuracy Ratio." Space Weather 16(1): 69-88.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/142454
dc.description.abstractQuantitative assessment of modeling and forecasting of continuous quantities uses a variety of approaches. We review existing literature describing metrics for forecast accuracy and bias, concentrating on those based on relative errors and percentage errors. Of these accuracy metrics, the mean absolute percentage error (MAPE) is one of the most common across many fields and has been widely applied in recent space science literature and we highlight the benefits and drawbacks of MAPE and proposed alternatives. We then introduce the log accuracy ratio and derive from it two metrics: the median symmetric accuracy and the symmetric signed percentage bias. Robust methods for estimating the spread of a multiplicative linear model using the log accuracy ratio are also presented. The developed metrics are shown to be easy to interpret, robust, and to mitigate the key drawbacks of their more widely used counterparts based on relative errors and percentage errors. Their use is illustrated with radiation belt electron flux modeling examples.Key PointsThe median symmetric accuracy and symmetric signed percentage bias are introduced to address some drawbacks of current metricsThe spread of a multiplicative linear model can be robustly estimated using the log accuracy ratioThe properties of the median symmetric accuracy and the symmetric signed percentage bias are demonstrated on radiation belt examples
dc.publisherJohn Wiley
dc.subject.otherforecasting
dc.subject.othermodel validation
dc.titleMeasures of Model Performance Based On the Log Accuracy Ratio
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142454/1/swe20550.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142454/2/swe20550_am.pdf
dc.identifier.doi10.1002/2017SW001669
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceStevens, S. S. ( 1946 ). On the theory of scales of measurement. Science, 103 ( 2684 ), 677 – 680. https://doi.org/10.1126/science.103.2684.677
dc.identifier.citedreferenceSchiller, Q., Tu, W., Ali, A. F., Li, X., Godinez, H. C., Turner, D. L., … Henderson, M. G. ( 2017 ). Simultaneous event‐specific estimates of transport, loss, and source rates for relativistic outer radiation belt electrons. Journal of Geophysical Research: Space Physics, 122, 3354 – 3373. https://doi.org/10.1002/2016JA023093
dc.identifier.citedreferenceSelesnick, R. S., & Blake, J. B. ( 1997 ). Dynamics of the outer radiation belt. Geophysical Research Letters, 24 ( 11 ), 1347 – 1350. https://doi.org/10.1029/97GL51409
dc.identifier.citedreferenceSheskin, D. J. ( 2007 ). Handbook of parametric and nonparametric statistical procedures (4th ed.). New York: Chapman and Hall/CRC.
dc.identifier.citedreferenceSubbotin, D. A., & Shprits, Y. Y. ( 2009 ). Three‐dimensional modeling of the radiation belts using the versatile electron radiation belt (verb) code. Space Weather, 7, S10001. https://doi.org/10.1029/2008SW000452
dc.identifier.citedreferenceSwanson, D. A., Tayman, J., & Barr, C. F. ( 2000 ). A note on the measurement of accuracy for subnational demographic estimates. Demography, 37 ( 2 ), 193 – 201.
dc.identifier.citedreferenceSwanson, D. A., Tayman, J., & Bryan, T. M. ( 2011 ). MAPE‐R: A rescaled measure of accuracy for cross‐sectional subnational population forecasts. Journal of Population Research, 28 ( 2 ), 225 – 243. https://doi.org/10. 1007/s12546-011-9054-5
dc.identifier.citedreferenceThornes, J. E., & Stephenson, D. B. ( 2001 ). How to judge the quality and value of weather forecast products. Meteorological Applications, 8 ( 3 ), 307 – 314. https://doi.org/10.1017/S1350482701003061
dc.identifier.citedreferenceTofallis, C. ( 2015 ). A better measure of relative prediction accuracy. Journal of the Operational Research Society, 66 ( 8 ), 1352 – 1362.
dc.identifier.citedreferenceTsyganenko, N. A. ( 2013 ). Data‐based modelling of the Earth’s dynamic magnetosphere: A review. Annales Geophysicae, 31 ( 10 ), 1745 – 1772. https://doi.org/10.5194/angeo-31-1745-2013
dc.identifier.citedreferenceTu, W., Cunningham, G. S., Chen, Y., Henderson, M. G., Camporeale, E., & Reeves, G. D. ( 2013 ). Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model. Journal of Geophysical Research: Space Physics, 118, 6197 – 6211. https://doi.org/10.1002/jgra.50560
dc.identifier.citedreferenceWalther, B. A., & Moore, J. L. ( 2005 ). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28 ( 6 ), 815 – 829. https://doi.org/10.1111/j.2005.0906-7590.04112.x
dc.identifier.citedreferenceWeiss, L. A., Thomsen, M. F., Reeves, G. D., & McComas, D. J. ( 1997 ). An examination of the Tsyganenko (T89a) field model using a database of two‐satellite magnetic conjunctions. Journal of Geophysical Research, 102, 4911 – 4918. https://doi.org/10.1029/96JA02876
dc.identifier.citedreferenceWelling, D. T. ( 2010 ). The long‐term effects of space weather on satellite operations. Annales Geophysicae, 28 ( 6 ), 1361 – 1367. https://doi.org/10.5194/angeo-28-1361-2010
dc.identifier.citedreferenceWilks, D. S. ( 2006 ). Statistical methods in the atmospheric sciences (2nd ed.). Oxford: Academic Press.
dc.identifier.citedreferenceYu, Y., Koller, J., Jordanova, V. K., Zaharia, S. G., Friedel, R. W., Morley, S. K., … Spence, H. E. ( 2014 ). Application and testing of the L * neural network with the self‐consistent magnetic field model of RAM‐SCB. Journal of Geophysical Research: Space Physics, 119, 1683 – 1692. https://doi.org/10.1002/2013JA019350
dc.identifier.citedreferenceZhelavskaya, I. S., Spasojevic, M., Shprits, Y. Y., & Kurth, W. S. ( 2016 ). Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft. Journal of Geophysical Research: Space Physics, 121, 4611 – 4625. https://doi.org/10.1002/2015JA022132
dc.identifier.citedreferenceZheng, Y., & Rosenfeld, D. ( 2015 ). Linear relation between convective cloud base height and updrafts and application to satellite retrievals. Geophysical Research Letters, 42, 6485 – 6491. https://doi.org/10.1002/2015GL064809
dc.identifier.citedreferenceAthanasiu, M. A., Pavlos, G. P., Sarafopoulos, D. V., & Sarris, E. T. ( 2003 ). Dynamical characteristics of magnetospheric energetic ion time series: Evidence for low dimensional chaos. Annales Geophysicae, 21, 1995 – 2010. https://doi.org/10.5194/angeo-21-1995-2003
dc.identifier.citedreferenceBaker, D. N., McPherron, R. L., Cayton, T. E., & Klebesadel, R. W. ( 1990 ). Linear prediction filter analysis of relativistic electron properties at 6.6 R E. Journal of Geophysical Research, 95, 15,133 – 15,140. https://doi.org/10.1029/JA095iA09p15133
dc.identifier.citedreferenceBelian, R. D., Gisler, G. R., Cayton, T., & Christensen, R. ( 1992 ). High‐ Z energetic particles at geosynchronous orbit during the Great Solar Proton Event Series of October 1989. Journal of Geophysical Research, 97, 16,897 – 16,906. https://doi.org/10.1029/92JA01139
dc.identifier.citedreferenceBlake, J., Carranza, P., Claudepierre, S., Clemmons, J., Crain Jr., W. R., Dotan, Y., … Zakrzewski, M. ( 2013 ). The Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Radiation Belt Storm Probes (RBSP) spacecraft. Space Science Reviews, 179 ( 1–4 ), 383 – 421. https://doi.org/10.1007/s11214-013-9991-8
dc.identifier.citedreferenceBrito, T. V., & Morley, S. K. ( 2017 ). Improving empirical magnetic field models by fitting to in situ data using an optimized parameter approach. Space Weather, 15, 1628 – 1648. https://doi.org/10.1002/2017SW001702
dc.identifier.citedreferenceChen, Y., Friedel, R. H. W., Reeves, G. D., Cayton, T. E., & Christensen, R. ( 2007 ). Multisatellite determination of the relativistic electron phase space density at geosynchronous orbit: An integrated investigation during geomagnetic storm times. Journal of Geophysical Research, 112, A11214. https://doi.org/10.1029/2007JA012314
dc.identifier.citedreferenceColeman, C. D., & Swanson, D. A. ( 2007 ). On MAPE‐R as a measure of cross‐sectional estimation and forecast accuracy. Journal of Economic and Social Measurement, 32, 219 – 233.
dc.identifier.citedreferenceDéqué, M. ( 2011 ). Deterministic forecasts of continuous variables. In I. T. Jolliffe, & D. B. Stephenson (Eds.), Forecast verification (pp. 77 – 94 ). Chichester, UK: John Wiley. https://doi.org/10.1002/9781119960003.ch5
dc.identifier.citedreferenceDrozdov, A. Y., Shprits, Y. Y., Aseev, N. A., Kellerman, A. C., & Reeves, G. D. ( 2017 ). Dependence of radiation belt simulations to assumed radial diffusion rates tested for two empirical models of radial transport. Space Weather, 15 ( 1 ), 150 – 162. https://doi.org/10.1002/2016SW001426
dc.identifier.citedreferenceFlores, B. E. ( 1986 ). A pragmatic view of accuracy measurement in forecasting. Omega, 14 ( 2 ), 93 – 98. https://doi.org/10.1016/0305-0483(86)90013-7
dc.identifier.citedreferenceFrancq, C., & Menvielle, M. ( 1996 ). A model for the Am ( Km ) planetary geomagnetic activity index and application to prediction. Geophysical Journal International, 125, 729 – 746. https://doi.org/10.1111/j. 1365-246X.1996.tb06020.x
dc.identifier.citedreferenceFriedel, R. H. W., Reeves, G. D., & Obara, T. ( 2002 ). Relativistic electron dynamics in the inner magnetosphere—A review. Journal of Atmospheric and Solar‐Terrestrial Physics, 64, 265 – 282. https://doi.org/10.1016/S1364-6826(01)00088-8
dc.identifier.citedreferenceGinet, G. P., O’Brien, T. P., Huston, S. L., Johnston, W. R., Guild, T. B., Friedel, R., … Su, Y.‐J. ( 2013 ). AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment. Space Science Reviews, 179, 579 – 615. https://doi.org/10.1007/s11214-013-9964-y
dc.identifier.citedreferenceGlocer, A., Tóth, G., Gombosi, T., & Welling, D. ( 2009 ). Modeling ionospheric outflows and their impact on the magnetosphere, initial results. Journal of Geophysical Research, 114, A05216. https://doi.org/10.1029/2009JA014053
dc.identifier.citedreferenceGrillakis, M. G., Koutroulis, A. G., & Tsanis, I. K. ( 2013 ). Multisegment statistical bias correction of daily GCM precipitation output. Journal of Geophysical Research: Atmospheres, 118, 3150 – 3162. https://doi.org/10.1002/jgrd.50323
dc.identifier.citedreferenceHampel, F. R. ( 1974 ). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69 ( 346 ), 383 – 393.
dc.identifier.citedreferenceHwang, J., Kim, K. C., Dokgo, K., Choi, E., & Kim, H. P. ( 2015 ). Heliocentric potential (HCP) prediction model for nowscast of aviation radiation dose. Journal of Astronomy and Space Science, 22 ( 1 ), 39 – 44. https://doi.org/10.5140/JASS.2015.32.1.39
dc.identifier.citedreferenceHyndman, R. J., & Anathasopoulos, G. ( 2014 ). Forecasting: Principles and practice. Melbourne, Australia: OTexts.
dc.identifier.citedreferenceHyndman, R. J., & Koehler, A. B. ( 2006 ). Another look at measures of forecast accuracy. International Journal of Forecasting, 22 ( 4 ), 679 – 688. https://doi.org/10.1016/j.ijforecast.2006.03.001
dc.identifier.citedreferenceJolliffe, I. T., & Stephenson, D. B. ( 2011 ). Introduction. In I. T. Jolliffe, & D. B. Stephenson (Eds.), Forecast verification (pp. 1 – 9 ). Chichester, UK: John Wiley. https://doi.org/10.1002/9781119960003.ch1
dc.identifier.citedreferenceKim, K.‐C., Shprits, Y., Subbotin, D., & Ni, B. ( 2012 ). Relativistic radiation belt electron responses to GEM magnetic storms: Comparison of CRRES observations with 3‐D VERB simulations. Journal of Geophysical Research, 117, A08221. https://doi.org/10.1029/2011JA017460
dc.identifier.citedreferenceKitchenham, B. A., Pickard, L. M., MacDonell, S. G., & Shepperd, M. J. ( 2001 ). What accuracy statistics really measure [software estimation]. IEE Proceedings – Software, 148 ( 3 ), 81 – 85. https://doi.org/10.1049/ip-sen: 20010506
dc.identifier.citedreferenceKohzadi, N., Boyd, M. S., Kermanshahi, B., & Kaastra, I. ( 1996 ). A comparison of artificial neural network and time series models for forecasting commodity prices. Neurocomputing, 10 ( 2 ), 169 – 181. https://doi.org/https://doi.org/10.1016/0925-2312(95)00020-8
dc.identifier.citedreferenceLi, X., Baker, D. N., Temerin, M., Reeves, G., Friedel, R., & Shen, C. ( 2005 ). Energetic electrons, 50 keV to 6 Mev, at geosynchronous orbit: Their responses to solar wind variations. Space Weather, 3, S04001. https://doi.org/10.1029/2004SW000105
dc.identifier.citedreferenceLi, Z., Hudson, M., & Chen, Y. ( 2014 ). Radial diffusion comparing a THEMIS statistical model with geosynchronous measurements as input. Journal of Geophysical Research: Space Physics, 119, 1863 – 1873. https://doi.org/10.1002/2013JA019320
dc.identifier.citedreferenceLundstedt, H., Gleisner, H., & Wintoft, P. ( 2002 ). Operational forecasts of the geomagnetic Dst index. Geophysical Research Letters, 29 ( 24 ), 2181. https://doi.org/10.1029/2002GL016151
dc.identifier.citedreferenceMakridakis, S. ( 1993 ). Accuracy measures: Theoretical and practical concerns. International Journal of Forecasting, 9 ( 4 ), 527 – 529. https://doi.org/10.1016/0169-2070(93)90079-3
dc.identifier.citedreferenceMauk, B., Fox, N., Kanekal, S., Kessel, R., Sibeck, D., & Ukhorskiy, A. ( 2013 ). Science objectives and rationale for the Radiation Belt Storm Probes mission. Space Science Reviews, 179 ( 1–4 ), 3 – 27. https://doi.org/10.1007/s11214-012-9908-y
dc.identifier.citedreferenceMenvielle, M., & Berthelier, A. ( 1991 ). The K‐derived planetary indices: Description and availability. Reviews of Geophysics, 29 ( 3 ), 415 – 432. https://doi.org/10.1029/91RG00994
dc.identifier.citedreferenceMorley, S. K. ( 2016 ). Alternatives to accuracy and bias metrics based on percentage errors for radiation belt modeling applications (Tech. Rep. LA‐UR‐16‐24592). Los Alamos, NM: Los Alamos National Laboratory.  https://doi.org/10.2172/1260362
dc.identifier.citedreferenceMorley, S. K., Sullivan, J. P., Carver, M. R., Kippen, R. M., Friedel, R. H. W., Reeves, G. D., & Henderson, M. G. ( 2017 ). Energetic particle data from the global positioning system constellation. Space Weather, 15, 283 – 289. https://doi.org/10.1002/2017SW001604
dc.identifier.citedreferenceMorley, S. K., Sullivan, J. P., Henderson, M. G., Blake, J. B., & Baker, D. N. ( 2016 ). The Global Positioning System constellation as a space weather monitor: Comparison of electron measurements with Van Allen Probes data. Space Weather, 14 ( 2 ), 76 – 92. https://doi.org/10.1002/2015SW001339
dc.identifier.citedreferenceMurphy, A. H. ( 1993 ). What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather and Forecasting, 8 ( 2 ), 281 – 293. https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2
dc.identifier.citedreferenceO’Brien, T. P., & McPherron, R. L. ( 2003 ). An empirical dynamic equation for energetic electrons at geosynchronous orbit. Journal of Geophysical Research, 108 ( A3 ), 1137. https://doi.org/10.1029/2002JA009324
dc.identifier.citedreferenceOsthus, D., Caragea, P. C., Higdon, D., Morley, S. K., Reeves, G. D., & Weaver, B. P. ( 2014 ). Dynamic linear models for forecasting of radiation belt electrons and limitations on physical interpretation of predictive models. Space Weather, 12, 426 – 446. https://doi.org/10.1002/2014SW001057
dc.identifier.citedreferenceReeves, G. D. ( 2011 ). DREAM: An integrated space radiation nowcast system for natural and nuclear radiation belts, Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) Maui, HI, September 14–17, 2011 (p. E2 ). Retrieved from http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-11-06307
dc.identifier.citedreferenceReeves, G. D., Morley, S. K., Friedel, R. H. W., Henderson, M. G., Cayton, T. E., Cunningham, G., … Thomsen, D. ( 2011 ). On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. Journal of Geophysical Research, 116, A02213. https://doi.org/10.1029/2010JA015735
dc.identifier.citedreferenceReeves, G. D., Chen, Y., Cunningham, G. S., Friedel, R. W. H., Henderson, M. G., Jordanova, V. K., … Zaharia, S. ( 2012 ). Dynamic radiation environment assimilation model: DREAM. Space Weather, 10, S03006. https://doi.org/10.1029/2011SW000729
dc.identifier.citedreferenceReeves, G. D., Spence, H. E., Henderson, M. G., Morley, S. K., Friedel, R. H. W., Funsten, H. O., … Niehof, J. T. ( 2013 ). Electron acceleration in the heart of the Van Allen radiation belts. Science, 341 ( 6149 ), 991 – 994. https://doi.org/10.1126/science.1237743
dc.identifier.citedreferenceReikard, G. ( 2011 ). Forecasting space weather: Can new econometric methods improve accuracy? Advances in Space Research, 47 ( 12 ), 2073 – 2080. https://doi.org/https://doi.org/10.1016/j.asr.2011.03.037
dc.identifier.citedreferenceRodriguez, J. V., Sandberg, I., Mewaldt, R. A., Daglis, I. A., & Jiggens, P. ( 2017 ). Validation of the effect of cross‐calibrated goes solar proton effective energies on derived integral fluxes by comparison with stereo observations,. Space Weather, 15, 290 – 309. https://doi.org/10.1002/2016SW001533
dc.identifier.citedreferenceRousseeuw, P. J., & Croux, C. ( 1993 ). Alternatives to the median absolute deviation. Journal of the American Statistical Association, 88 ( 424 ), 1273 – 1283. https://doi.org/10.1080/01621459.1993.10476408
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.