Show simple item record

Methods for meta‐analysis of multiple traits using GWAS summary statistics

dc.contributor.authorRay, Debashree
dc.contributor.authorBoehnke, Michael
dc.date.accessioned2018-03-07T18:24:15Z
dc.date.available2019-05-13T14:45:24Zen
dc.date.issued2018-03
dc.identifier.citationRay, Debashree; Boehnke, Michael (2018). "Methods for meta‐analysis of multiple traits using GWAS summary statistics." Genetic Epidemiology 42(2): 134-145.
dc.identifier.issn0741-0395
dc.identifier.issn1098-2272
dc.identifier.urihttps://hdl.handle.net/2027.42/142462
dc.description.abstractGenome‐wide association studies (GWAS) for complex diseases have focused primarily on single‐trait analyses for disease status and disease‐related quantitative traits. For example, GWAS on risk factors for coronary artery disease analyze genetic associations of plasma lipids such as total cholesterol, LDL‐cholesterol, HDL‐cholesterol, and triglycerides (TGs) separately. However, traits are often correlated and a joint analysis may yield increased statistical power for association over multiple univariate analyses. Recently several multivariate methods have been proposed that require individual‐level data. Here, we develop metaUSAT (where USAT is unified score‐based association test), a novel unified association test of a single genetic variant with multiple traits that uses only summary statistics from existing GWAS. Although the existing methods either perform well when most correlated traits are affected by the genetic variant in the same direction or are powerful when only a few of the correlated traits are associated, metaUSAT is designed to be robust to the association structure of correlated traits. metaUSAT does not require individual‐level data and can test genetic associations of categorical and/or continuous traits. One can also use metaUSAT to analyze a single trait over multiple studies, appropriately accounting for overlapping samples, if any. metaUSAT provides an approximate asymptotic P‐value for association and is computationally efficient for implementation at a genome‐wide level. Simulation experiments show that metaUSAT maintains proper type‐I error at low error levels. It has similar and sometimes greater power to detect association across a wide array of scenarios compared to existing methods, which are usually powerful for some specific association scenarios only. When applied to plasma lipids summary data from the METSIM and the T2D‐GENES studies, metaUSAT detected genome‐wide significant loci beyond the ones identified by univariate analyses. Evidence from larger studies suggest that the variants additionally detected by our test are, indeed, associated with lipid levels in humans. In summary, metaUSAT can provide novel insights into the genetic architecture of a common disease or traits.
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othermultivariate analysis
dc.subject.otheroverlapping samples
dc.subject.otherPheWAS
dc.subject.otherscore test
dc.subject.othersummary statistics
dc.subject.otherT2D‐GENES
dc.subject.otherpleiotropy
dc.subject.othercross‐phenotype association
dc.subject.otherGWAS
dc.subject.otherjoint modeling
dc.subject.othermeta‐analysis
dc.subject.otherMETSIM
dc.subject.othermultiple traits
dc.titleMethods for meta‐analysis of multiple traits using GWAS summary statistics
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142462/1/gepi22105_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142462/2/gepi22105.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142462/3/gepi22105-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/gepi.22105
dc.identifier.sourceGenetic Epidemiology
dc.identifier.citedreferenceRay, D., Pankow, J. S., & Basu, S. ( 2016 ). USAT: A unified score‐based association test for multiple phenotype‐genotype analysis. Genetic Epidemiology, 40, 20 – 34.
dc.identifier.citedreferenceDiggle, P., Heagerty, P., Liang, K.‐Y., & Zeger, S. L. ( 2002 ). Analysis of longitudinal data. Oxford University Press, Oxford, UK.
dc.identifier.citedreferenceFerreira, M., & Purcell, S. ( 2009 ). A multivariate test of association. Bioinformatics, 25, 132 – 133.
dc.identifier.citedreferenceFuchsberger, C., Flannick, J., Teslovich, T. M., Mahajan, A., Agarwala, V., Gaulton, K. J.,... McCarthy, M. I. ( 2016 ). The genetic architecture of type 2 diabetes. Nature, 536, 41 – 47.
dc.identifier.citedreferenceGenz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., & Hothorn, T. ( 2016 ). mvtnorm: Multivariate Normal and t Distributions. R package version 1.0‐5.
dc.identifier.citedreferenceHe, L., Kernogitski, Y., Kulminskaya, I., Loika, Y., Arbeev, K., Loiko, E.,... Kulminski, A. M. ( 2016 ). Pleiotropic meta‐analyses of longitudinal studies discover novel genetic variants associated with age‐related diseases. Frontiers in Genetics, 7, 179.
dc.identifier.citedreferenceHebbring, S. J. ( 2014 ). The challenges, advantages and future of phenome‐wide association studies. Immunology, 141, 157 – 165.
dc.identifier.citedreferenceKang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S.‐y., Freimer, N. B.,... Eskin, E. ( 2010 ). Variance component model to account for sample structure in genome‐wide association studies. Nature Genetics, 42, 348 – 354.
dc.identifier.citedreferenceKathiresan, S., Voight, B. F., Purcell, S., Musunuru, K., Ardissino, D., Mannucci, P. M.,... Altshuler, D. ( 2009 ). Genome‐wide association of early‐onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nature Genetics, 41, 334 – 341.
dc.identifier.citedreferenceKettunen, J., Tukiainen, T., Sarin, A.‐P., Ortega‐Alonso, A., Tikkanen, E., Lyytikäinen, L.‐P.,... Ripatti, S. ( 2012 ). Genome‐wide association study identifies multiple loci influencing human serum metabolite levels. Nature Genetics, 44, 269 – 276.
dc.identifier.citedreferenceKim, J., Bai, Y., & Pan, W. ( 2015 ). An adaptive association test for multiple phenotypes with GWAS summary statistics. Genetic Epidemiology, 39, 651 – 663.
dc.identifier.citedreferenceKristiansson, K., Perola, M., Tikkanen, E., Kettunen, J., Surakka, I., Havulinna, A. S.,... Salomaa, V. ( 2012 ). Genome‐wide screen for metabolic syndrome susceptibility loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circulation: Cardiovascular Genetics, 5, 242 – 249.
dc.identifier.citedreferenceLin, D.‐Y., & Sullivan, P. ( 2009 ). Meta‐analysis of genome‐wide association studies with overlapping subjects. American Journal of Human Genetics, 85, 862 – 872.
dc.identifier.citedreferenceLiu, H., Tang, Y., & Zhang, H. ( 2009 ). A new chi‐square approximation to the distribution of non‐negative definite quadratic forms in non‐central normal variables. Computational Statistics & Data Analysis, 53, 853 – 856.
dc.identifier.citedreferenceLiu, Z., & Lin, X. ( 2017 ). Multiple phenotype association tests using summary statistics in genome‐wide association studies. Biometrics. https://doi.org/10.1111/biom.12735.
dc.identifier.citedreferenceMajumdar, A., Witte, J. S., & Ghosh, S. ( 2015 ). Semiparametric allelic tests for mapping multiple phenotypes: Binomial regression and Mahalanobis distance. Genetic Epidemiology, 39, 635 – 650.
dc.identifier.citedreferenceO’Brien, P. ( 1984 ). Procedures for comparing samples with multiple endpoints. Biometrics, 40, 1079 – 1087.
dc.identifier.citedreferencePan, W. ( 2009 ). Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genetic Epidemiology, 33, 497 – 507.
dc.identifier.citedreferencePausch, H., Emmerling, R., Schwarzenbacher, H., & Fries, R. ( 2016 ). A multi‐trait meta‐analysis with imputed sequence variants reveals twelve QTL for mammary gland morphology in Fleckvieh cattle. Genetics Selection Evolution, 48. https://doi.org/10.1186/s12711-016-0190-4
dc.identifier.citedreferencePorter, H., & O’Reilly, P. ( 2017 ). Multivariate simulation framework reveals performance of multi‐trait GWAS methods. Scientific Reports, 7. https://doi.org/10.1038/srep38837.
dc.identifier.citedreferenceRay, D., & Basu, S. ( 2017 ). A novel association test for multiple secondary phenotypes from a case‐control GWAS. Genetic Epidemiology, 41, 413 – 426.
dc.identifier.citedreferenceRay, D., Li, X., Pan, W., Pankow, J. S., & Basu, S. ( 2015 ). A Bayesian partitioning model for detection of multilocus effects in case‐control studies. Human Heredity, 79, 69 – 79.
dc.identifier.citedreferenceStancčáková, A., Javorský, M., Kuulasmaa, T., Haffner, S., Kuusisto, J., & Laakso, M. ( 2009 ). Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6416 Finnish men. Diabetes, 58, 1212 – 1221.
dc.identifier.citedreferenceStephens, M. ( 2013 ). A unified framework for association analysis with multiple related phenotypes. PLoS One, 8, e65245.
dc.identifier.citedreferenceSurakka, I., Horikoshi, M., Mägi, R., Sarin, A.‐P., Mahajan, A., Lagou, V.,... ENGAGE Consortium. ( 2015 ). The impact of low‐frequency and rare variants on lipid levels. Nature Genetics, 47, 589 – 597.
dc.identifier.citedreferenceTeslovich, T. M., Musunuru, K., Smith, A. V., Edmondson, A. C., Stylianou, I. M., Koseki, M.,... Kathiresan, S. ( 2010 ). Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 466, 707 – 713.
dc.identifier.citedreferenceWelter, D., MacArthur, J., Morales, J., Burdett, T., Hall, P., Junkins, H.,... Parkinson, H. ( 2014 ). The NHGRI GWAS Catalog, a curated resource of SNP‐trait associations. Nucleic Acids Research, 42, D1001 – D1006.
dc.identifier.citedreferenceWiller, C. J., Li, Y., & Abecasis, G. R. ( 2010 ). METAL: Fast and efficient meta‐analysis of genomewide association scans. Bioinformatics, 26, 2190 – 2191.
dc.identifier.citedreferenceWiller, C. J., Schmidt, E. M., Sengupta, S., Peloso, G. M., Gustafsson, S., Kanoni, S.,... Global Lipids Genetics Consortium. ( 2013 ). Discovery and refinement of loci associated with lipid levels. Nature Genetics, 45, 1274 – 1283.
dc.identifier.citedreferenceWu, B., & Pankow, J. S. ( 2016 ). On sample size and power calculation for variant set‐based association tests. Annals of Human Genetics, 80, 136 – 143.
dc.identifier.citedreferenceWu, M., Lee, S., Cai, T., Li, Y., Boehnke, M., & Lin, X. ( 2011 ). Rare‐variant association testing for sequencing data with the sequence kernel association test. American Journal of Human Genetics, 89, 82 – 93.
dc.identifier.citedreferenceZhou, X., & Stephens, M. ( 2014 ). Efficient multivariate linear mixed model algorithms for genome‐wide association studies. Nature Methods, 11, 407 – 409.
dc.identifier.citedreferenceZhu, X., Feng, T., Tayo, B. O., Liang, J., Young, J. H., Franceschini, N.,... Redline, S. ( 2015 ). Meta‐analysis of correlated traits via summary statistics from GWASs with an application in hypertension. American Journal of Human Genetics, 96, 21 – 36.
dc.identifier.citedreferenceBasu, S., Zhang, Y., Ray, D., Miller, M., Iacono, W., & McGue, M. ( 2013 ). A rapid gene‐based genome‐wide association test with multivariate traits. Human Heredity, 76, 53 – 63.
dc.identifier.citedreferenceBolormaa, S., Pryce, J., Reverter, A., Zhang, Y., Barendse, W., Kemper, K.,... Goddard, M. ( 2014 ). A multi‐trait, meta‐analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle. PLoS Genetics, 10, e1004198.
dc.identifier.citedreferenceBush, W. S., Oetjens, M. T., & Crawford, D. C. ( 2016 ). Unravelling the human genome‐phenome relationship using phenome‐wide association studies. Nature Reviews Genetics, 17, 129 – 145.
dc.identifier.citedreferenceCichonska, A., Rousu, J., Marttinen, P., Kangas, A. J., Soininen, P., Lehtimäki, T.,... Pirinen, M. ( 2016 ). metaCCA: Summary statistics‐based multivariate meta‐analysis of genome‐wide association studies using canonical correlation analysis. Bioinformatics, 32, 1981 – 1989.
dc.identifier.citedreferenceConneely, K. N., & Boehnke, M. ( 2007 ). So many correlated tests, so little time! Rapid adjustment of p values for multiple correlated tests. American Journal of Human Genetics, 81, 1158 – 1168.
dc.identifier.citedreferenceDavies, R. ( 1980 ). Algorithm AS 155: The distribution of a linear combination of chi‐square random variables. Journal of the Royal Statistical Society. Series C, Applied Statistics, 29, 323 – 333.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.