Show simple item record

Production of cellulosic organic acids via synthetic fungal consortia

dc.contributor.authorScholz, Scott A.
dc.contributor.authorGraves, Ian
dc.contributor.authorMinty, Jeremy J.
dc.contributor.authorLin, Xiaoxia N.
dc.date.accessioned2018-03-07T18:24:29Z
dc.date.available2019-05-13T14:45:24Zen
dc.date.issued2018-04
dc.identifier.citationScholz, Scott A.; Graves, Ian; Minty, Jeremy J.; Lin, Xiaoxia N. (2018). "Production of cellulosic organic acids via synthetic fungal consortia." Biotechnology and Bioengineering 115(4): 1096-1100.
dc.identifier.issn0006-3592
dc.identifier.issn1097-0290
dc.identifier.urihttps://hdl.handle.net/2027.42/142474
dc.description.abstractConsolidated bioprocessing (CBP) is a potential breakthrough technology for reducing costs of biochemical production from lignocellulosic biomass. Production of cellulase enzymes, saccharification of lignocellulose, and conversion of the resulting sugars into a chemical of interest occur simultaneously within a single bioreactor. In this study, synthetic fungal consortia composed of the cellulolytic fungus Trichoderma reesei and the production specialist Rhizopus delemar demonstrated conversion of microcrystalline cellulose (MCC) and alkaline pre‐treated corn stover (CS) to fumaric acid in a fully consolidated manner without addition of cellulase enzymes or expensive supplements such as yeast extract. A titer of 6.87 g/L of fumaric acid, representing 0.17 w/w yield, were produced from 40 g/L MCC with a productivity of 31.8 mg/L/hr. In addition, lactic acid was produced from MCC using a fungal consortium with Rhizopus oryzae as the production specialist. These results are proof‐of‐concept demonstration of engineering synthetic microbial consortia for CBP production of naturally occurring biomolecules.Scholz and coworkers developed a consolidated bioprocessing system that supports all of the steps required for conversion of lignocellulosic biomass to two organic acids, including cell growth, cellulase enzyme production, lignocellulose hydrolysis, and organic acid production. This process was achieved in a minimal medium, without supplementation of expensive nutrients, by pairing the cellulolytic specialist Trichoderma reesei and a furmaric acid or lactic acid producing fungal specialist into a functional synthetic consortium.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfumaric acid
dc.subject.othersynthetic consortia
dc.subject.otherconsolidated bioprocessing
dc.subject.otherlignocellulosic biomass
dc.titleProduction of cellulosic organic acids via synthetic fungal consortia
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142474/1/bit26509.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142474/2/bit26509_am.pdf
dc.identifier.doi10.1002/bit.26509
dc.identifier.sourceBiotechnology and Bioengineering
dc.identifier.citedreferenceRoa Engel, C. A., Straathof, A. J. J., Zijlmans, T. W., van Gulik, W. M., & van der Wielen, L. A. M. ( 2008 ). Fumaric acid production by fermentation. Applied Microbiology and Biotechnology, 78, 379 – 389.
dc.identifier.citedreferenceValkonen, M., Penttilä, M., & Benčina, M. ( 2014 ). Intracellular pH responses in the industrially important fungus Trichoderma reesei. Fungal Genetics and Biology, 70: 86 – 93.
dc.identifier.citedreferenceBrethauer, S., & Studer, M. H. ( 2014 ). Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy and Environmental Science, 7, 1446 – 1453.
dc.identifier.citedreferenceCarroll, A., & Somerville, C. ( 2009 ). Cellulosic biofuels. Annual Review of Plant Biology, 60, 165 – 182.
dc.identifier.citedreferenceden Haan, R., van Rensburg, E., Rose, S. H., Görgens, J. F., & van Zyl, W. H. ( 2015 ). Progress and challenges in the engineering of non‐cellulolytic microorganisms for consolidated bioprocessing. Current Opinion in Biotechnology, 33, 32 –38.
dc.identifier.citedreferenceDing, Y., Li, S., Dou, C., Yu, Y., & Huang, H. ( 2011 ). Production of Fumaric Acid by Rhizopus oryzae: Role of Carbon–Nitrogen Ratio. Biotechnology and Applied Biochemistry, 164, 1461 – 1467.
dc.identifier.citedreferenceDunn, J. B., Mueller, S., Kwon, H. Y., & Wang, M. Q. ( 2013 ). Land‐use change and greenhouse gas emissions from corn and cellulosic ethanol. Biotechnology for Biofuels, 6, 51.
dc.identifier.citedreferenceGoyal, G., Tsai, S. L., Madan, B., DaSilva, N. A., & Chen, W. ( 2011 ). Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini‐cellulosome. Microbial Cell Factories, 10, 89.
dc.identifier.citedreferenceJuhász, T., Szengyel, Z., Réczey, K., Siika‐Aho, M., & Viikari, L. ( 2005 ). Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry, 40, 3519 –3525.
dc.identifier.citedreferenceKautola, H., & Linko, Y. Y. ( 1989 ). Fumaric acid production from xylose by immobilized Rhizopus arrhizus cells. Applied Microbiology and Biotechnology, 31, 448 –452.
dc.identifier.citedreferenceKawaguchi, H., Hasunuma, T., Ogino, C., & Kondo, A. ( 2016 ). Bioprocessing of bio‐based chemicals produced from lignocellulosic feedstocks. Current Opinion in Biotechnology, 42, 30 –39.
dc.identifier.citedreferenceKim, S., Baek, S. H., Lee, K., & Hahn, J. S. ( 2013 ). Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β‐glucosidase. Microbial Cell Factories, 12, 14.
dc.identifier.citedreferenceKumar, R., Mago, G., Balan, V., & Wyman, C. E. ( 2009 ). Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresource Technology, 100, 3948 – 3962.
dc.identifier.citedreferenceLambertz, C., Garvey, M., Klinger, J., Heesel, D., Klose, H., Fischer, R., & Commandeur, U. ( 2014 ). Challenges and advances in the heterologous expression of cellulolytic enzymes: A review. Biotechnology for Biofuels, 7, 135.
dc.identifier.citedreferenceMinty, J. J., Singer, M. E., Scholz, S. A., Bae, C. H., Ahn, J. H., Foster, C. E., … Lin, X. N. ( 2013 ). Design and characterization of synthetic fungal‐bacterial consortia for direct production of isobutanol from cellulosic biomass. Proceedings of the National Academy of Sciences of the United States of America, 110, 14592 –14597.
dc.identifier.citedreferenceMoreno, A. D., Ibarra, D., Alvira, P., Tomás‐Pejó, E., & Ballesteros, M. ( 2015 ). A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Critical Reviews in Biotechnology, 35, 342 –354.
dc.identifier.citedreferenceOlson, D. G., McBride, J. E., Shaw, A. J., & Lynd, L. R. ( 2012 ). Recent progress in consolidated bioprocessing. Current Opinion in Biotechnology, 23, 396 – 405.
dc.identifier.citedreferenceParisutham, V., Kim, T. H., & Lee, S. K. ( 2014 ). Feasibilities of consolidated bioprocessing microbes: From pretreatment to biofuel production. Bioresource Technology, 161, 431 – 440.
dc.identifier.citedreferencePeterson, R., & Nevalainen, H. ( 2012 ). Trichoderma reesei RUT‐C30‐thirty years of strain improvement. Microbiology, 158, 58 –68.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.