Show simple item record

Time‐Dependent Cryospheric Longwave Surface Emissivity Feedback in the Community Earth System Model

dc.contributor.authorKuo, Chaincy
dc.contributor.authorFeldman, Daniel R.
dc.contributor.authorHuang, Xianglei
dc.contributor.authorFlanner, Mark
dc.contributor.authorYang, Ping
dc.contributor.authorChen, Xiuhong
dc.date.accessioned2018-03-07T18:24:44Z
dc.date.available2019-03-01T21:00:18Zen
dc.date.issued2018-01-27
dc.identifier.citationKuo, Chaincy; Feldman, Daniel R.; Huang, Xianglei; Flanner, Mark; Yang, Ping; Chen, Xiuhong (2018). "Time‐Dependent Cryospheric Longwave Surface Emissivity Feedback in the Community Earth System Model." Journal of Geophysical Research: Atmospheres 123(2): 789-813.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/142486
dc.description.abstractFrozen and unfrozen surfaces exhibit different longwave surface emissivities with different spectral characteristics, and outgoing longwave radiation and cooling rates are reduced for unfrozen scenes relative to frozen ones. Here physically realistic modeling of spectrally resolved surface emissivity throughout the coupled model components of the Community Earth System Model (CESM) is advanced, and implications for model high‐latitude biases and feedbacks are evaluated. It is shown that despite a surface emissivity feedback amplitude that is, at most, a few percent of the surface albedo feedback amplitude, the inclusion of realistic, harmonized longwave, spectrally resolved emissivity information in CESM1.2.2 reduces wintertime Arctic surface temperature biases from −7.2 ± 0.9 K to −1.1 ± 1.2 K, relative to observations. The bias reduction is most pronounced in the Arctic Ocean, a region for which Coupled Model Intercomparison Project version 5 (CMIP5) models exhibit the largest mean wintertime cold bias, suggesting that persistent polar temperature biases can be lessened by including this physically based process across model components. The ice emissivity feedback of CESM1.2.2 is evaluated under a warming scenario with a kernel‐based approach, and it is found that emissivity radiative kernels exhibit water vapor and cloud cover dependence, thereby varying spatially and decreasing in magnitude over the course of the scenario from secular changes in atmospheric thermodynamics and cloud patterns. Accounting for the temporally varying radiative responses can yield diagnosed feedbacks that differ in sign from those obtained from conventional climatological feedback analysis methods.Plain Language SummaryClimate models have exhibited a persistent cold‐pole bias, whereby they systematically underestimate the average temperature and the amplification of climate change at high latitudes. A number of different explanations have been advanced for cold‐pole biases, which can be broadly divided into radiative and dynamic explanations. Here we explore in detail a relatively novel radiative explanation for the cold‐pole bias: the ice emissivity feedback. Similar to the difference in shortwave reflectivity of unfrozen and frozen surfaces, recent literature has shown that unfrozen surfaces are less emissive than frozen surfaces, which can induce a positive radiative feedback. We first present the highly nontrivial implementation of this feedback in a global circulation model (GCM) and show how to harmonize the disjointed representation of surface emissivity within the radiative transfer calculated by atmospheric and land components of a GCM. With this modified model, we show how this ice emissivity feedback depends on atmospheric water vapor and thus varies on time scales ranging from seasonal to centennial. We also show that the ice emissivity feedback is seasonally complementary to the well‐known ice‐albedo feedback, where the former is most influential during polar night. Finally, we show that including this feedback essentially eliminates the cold‐pole bias on the model we used.Key PointsLW spectral surface emissivity improves CESM Arctic surface temperature bias by 6.1 ± 1.9 degrees KelvinSpectral emissivity kernels computed for 200+ period are nonlinear in timeTemporally and spatially localized atmospheric dynamics show decreased climatological seasonal sea ice emissivity radiative response in Arctic
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherclimate feedback
dc.subject.otheremissivity
dc.subject.otherlongwave
dc.subject.otherradiative kernel
dc.subject.othertemporal
dc.titleTime‐Dependent Cryospheric Longwave Surface Emissivity Feedback in the Community Earth System Model
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142486/1/jgrd54377_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142486/2/jgrd54377.pdf
dc.identifier.doi10.1002/2017JD027595
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceQu, X., & Hall, A. ( 2006 ). Assessing snow albedo feedback in simulated climate change. Journal of Climate, 19 ( 11 ), 2617 – 2630.
dc.identifier.citedreferenceLi, J. ( 2000 ). Gaussian quadrature and its application to infrared radiation. Journal of the Atmospheric Sciences, 57 ( 5 ), 753 – 765. https://doi.org10.1175/1520-0469(2000)057<0753:GQAIAT>2.0.CO;2
dc.identifier.citedreferenceMassom, R. A., Eicken, H., Hass, C., Jeffries, M. O., Drinkwater, M. R., Sturm, M., … Morris, K. ( 2001 ). Snow on Antarctic sea ice. Reviews of Geophysics, 39 ( 3 ), 413 – 445.
dc.identifier.citedreferenceMauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M., & Mikolajewicz, U. ( 2012 ). Tuning the climate of a global model. Journal of Advances in Modeling Earth Systems, 4, M00A01. https://doi.org/10.1029/2012MS000154
dc.identifier.citedreferenceMeehl, G. A., Covey, C., Taylor, K. E., Delworth, T., Stouffer, R. J., Latif, M., … Mitchell, J. F. ( 2007 ). The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bulletin of the American Meteorological Society, 88 ( 9 ), 1383 – 1394.
dc.identifier.citedreferenceMishchenko, M. I. ( 1994 ). Asymmetry parameters of the phase function for densely packed scattering grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 52 ( 1 ), 95 – 110.
dc.identifier.citedreferenceMlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. ( 1997 ). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research, 102 ( D14 ), 16,663 – 16,682.
dc.identifier.citedreferenceNeftel, A., Friedli, H., Moor, E., Lötscher, H., Oeschger, H., Siegenthaler, U., & Stauffer, B. ( 1994 ). Historical CO 2 record from the Siple Station ice core, Trends: A compendium of data on global change. Carbon dioxide information analysis center. Oak Ridge, TN: Oak Ridge National Laboratory, U.S. Department of Energy.
dc.identifier.citedreferenceNOAA ESRL Global Monitoring Division ( 2015 ). Updated annually. Atmospheric carbon dioxide dry air mole fractions from quasi‐continuous measurements at Mauna Loa, Hawaii. Compiled by K.W. Thoning, D.R. Kitzis, and A. Crotwell. National Oceanic and Atmospheric Administration (NOAA), Earth System Research Laboratory (ESRL), Global Monitoring Division (GMD), Boulder, CO. Version 2015‐12 at https://doi.org/10.7289/V54X55RG
dc.identifier.citedreferenceOtto‐Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L., Stevenson, S., … Strand, G. ( 2016 ). Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model. Bulletin of the American Meteorological Society, 97 ( 5 ), 735 – 754. https://doi.org/10.1175/BAMS-D-14-00233.1
dc.identifier.citedreferencePark, T. W., Deng, Y., Cai, M., Jeong, J. H., & Zhou, R. ( 2014 ). A dissection of the surface temperature biases in the Community Earth System Model. Climate dynamics, 43 ( 7‐8 ), 2043 – 2059.
dc.identifier.citedreferenceQu, X., & Hall, A. ( 2007 ). What controls the strength of snow‐albedo feedback? Journal of Climate, 20 ( 15 ), 3971 – 3981.
dc.identifier.citedreferenceQu, X., & Hall, A. ( 2014 ). On the persistent spread in snow‐albedo feedback. Climate Dynamics, 42 ( 1‐2 ), 69 – 81.
dc.identifier.citedreferenceSanderson, B. M., Shell, K. M., & Ingram, W. ( 2010 ). Climate feedbacks determined using radiative kernels in a multi‐thousand member ensemble of AOGCMs. Climate Dynamics, 35 ( 7 ), 1219 – 1236.
dc.identifier.citedreferenceShell, K. M., Kiehl, J. T., & hields, C. A. ( 2008 ). Using the radiative kernel technique to calculate climate feedbacks in NCAR’s Community Atmospheric Model. Journal of Climate, 21 ( 10 ), 2269 – 2282.
dc.identifier.citedreferenceSmith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., … Hecht, M. ( 2010 ). The Parallel Ocean Program (POP) reference manual ocean component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM) ( Rep. LAUR‐01853, 141 ). Boulder, CO: University Corporation for Atmospheric Research.
dc.identifier.citedreferenceSoden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., & Shields, C. A. ( 2008 ). Quantifying climate feedbacks using radiative kernels. Journal of Climate, 21 ( 14 ), 3504 – 3520.
dc.identifier.citedreferenceStroeve, J., Holland, M. M., Meier, W., Scambos, T., & Serreze, M. ( 2007 ). Arctic sea ice decline: Faster than forecast. Geophysical Research Letters, 34, L09501. https://doi.org/10.1029/2007GL029703
dc.identifier.citedreferenceTaylor, K. E., Stouffer, R. J., & Meehl, G. A. ( 2012 ). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93 ( 4 ), 485 – 498.
dc.identifier.citedreferenceTrenberth, K. E., Fasullo, J. T., & Kiehl, J. ( 2009 ). Earth’s global energy budget. Bulletin of the American Meteorological Society, 90 ( 3 ), 311 – 323. https://doi.org/10.1175/2008bams2634.1
dc.identifier.citedreferenceWarren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N. N., Aleksandrov, Y. I., & Colony, R. ( 1999 ). Snow depth on Arctic sea ice. Journal of Climate, 12 ( 6 ), 1814 – 1829.
dc.identifier.citedreferenceWarren, S. G., & Brandt, R. E. ( 2008 ). Optical constants of ice from the ultraviolet to the microwave: A revised compilation. Journal of Geophysical Research, 113, D14220. https://doi.org/10.1029/2007JD009744
dc.identifier.citedreferenceWebster, M. A., Rigor, I. G., Nghiem, S. V., Kurtz, N. T., Farrell, S. L., Perovich, D. K., & Sturm, M. ( 2014 ). Interdecadal changes in snow depth on Arctic sea ice. Journal of Geophysical Research: Oceans, 119, 5395 – 5406. https://doi.org/10.1002/2014JC009985
dc.identifier.citedreferenceWetherald, R. T., & Manabe, S. ( 1988 ). Cloud feedback processes in a general circulation model. Journal of the Atmospheric Sciences, 45 ( 8 ), 1397 – 1416.
dc.identifier.citedreferenceWinton, M. ( 2006 ). Surface albedo feedback estimates for the AR4 climate models. Journal of Climate, 19 ( 3 ), 359 – 365.
dc.identifier.citedreferenceArctic Climate Impact Assessment ( 2005 ). Arctic climate impact assessment ( ACIA Overview Report ) (p. 1020 ). New York, NY: Cambridge University Press. ISBN 0 521 86509 3.
dc.identifier.citedreferenceArmour, K. C., Bitz, C. M., & Roe, G. H. ( 2013 ). Time‐varying climate sensitivity from regional feedbacks. Journal of Climate, 26 ( 13 ), 4518 – 4534.
dc.identifier.citedreferenceBaldridge, A. M., Hook, S. J., Grove, C. I., & Rivera, G. ( 2009 ). The ASTER spectral library version 2.0. Remote Sensing of Environment, 113 ( 4 ), 711 – 715.
dc.identifier.citedreferenceBarton, N. P., Klein, S. A., & Boyle, J. S. ( 2014 ). On the contribution of longwave radiation to global climate model biases in Arctic lower tropospheric stability. Journal of Climate, 27 ( 19 ), 7250 – 7269.
dc.identifier.citedreferenceBony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J. L., … Randall, D. A. ( 2006 ). How well do we understand and evaluate climate change feedback processes? Journal of Climate, 19 ( 15 ), 3445 – 3482.
dc.identifier.citedreferenceChen, X., Huang, X., & Flanner, M. G. ( 2014 ). Sensitivity of modeled far‐IR radiation budgets in polar continents to treatments of snow surface and ice cloud radiative properties. Geophysical Research Letters, 41, 6530 – 6537. https://doi.org/10.1002/2014GL061216
dc.identifier.citedreferenceColman, R. A., & McAvaney, B. J. ( 1997 ). A study of general circulation model climate feedbacks determined from perturbed sea surface temperature experiments. Journal of Geophysical Research, 102 ( D16 ), 19383 – 19402.
dc.identifier.citedreferenceColman, R. A. ( 2013 ). Surface albedo feedbacks from climate variability and change. Journal of Geophysical Research: Atmospheres, 118, 2827 – 2834. https://doi.org/10.1002/jgrd.50230
dc.identifier.citedreferenceComiso, J. C., & Nishio, F. ( 2008 ). Trends in the sea ice cover using enhanced and compatible AMSR‐E, SSM/I, and SMMR data. Journal of Geophysical Research, 113, C02S07. https://doi.org10.1029/2007JC004257
dc.identifier.citedreferenceCrook, J. A., & Forster, P. M. ( 2014 ). Comparison of surface albedo feedback in climate models and observations. Geophysical Research Letters, 41, 1717 – 1723. https://doi.org10.1002/2014GL059280
dc.identifier.citedreferenceDee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., … Bechtold, P. ( 2011 ). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 ( 656 ), 553 – 597.
dc.identifier.citedreferenceEnglish, J. M., Kay, J. E., Gettelman, A., Liu, X., Wang, Y., Zhang, Y., & Chepfer, H. ( 2014 ). Contributions of clouds, surface albedos, and mixed‐phase ice nucleation schemes to Arctic radiation biases in CAM5. Journal of Climate, 27 ( 13 ), 5174 – 5197.
dc.identifier.citedreferenceFeldman, D. R., Collins, W. D., Pincus, R., Huang, X., & Chen, X. ( 2014 ). Far‐infrared surface emissivity and climate. Proceedings of the National Academy of Sciences, 111 ( 46 ), 16,297 – 16,302.
dc.identifier.citedreferenceFlanner, M. G., Shell, K. M., Barlage, M., Perovich, D. K., & Tschudi, M. A. ( 2011 ). Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nature Geoscience, 4 ( 3 ), 151 – 155.
dc.identifier.citedreferenceFlato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W. J., … Forest, C. ( 2013 ). Evaluation of climate models. In: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2013, 5, 741 – 866.
dc.identifier.citedreferenceGettelman, A., Liu, X., Ghan, S. J., Morrison, H., Park, S., Conley, A. J., … Li, J. L. ( 2010 ). Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. Journal of Geophysical Research, 115, D18216. https://doi.org10.1029/2009JD013797
dc.identifier.citedreferenceHale, G. M., & Querry, M. R. ( 1973 ). Optical constants of water in the 200‐nm to 200‐μm wavelength region. Applied optics, 12 ( 3 ), 555 – 563.
dc.identifier.citedreferenceHall, A., & Qu, X. ( 2006 ). Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophysical Research Letters, 33, L03502. https://doi.org10.1029/2005GL025127
dc.identifier.citedreferenceHansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., … Novakov, T. ( 2005 ). Earth’s energy imbalance: Confirmation and implications. Science, 308 ( 5727 ), 1431 – 1435. https://doi.org10.1126/science.1110252
dc.identifier.citedreferenceHori, M., Aoki, T., Tanikawa, T., Motoyoshi, H., Hachikubo, A., Sugiura, K., & Takahashi, F. ( 2006 ). In‐situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window. Remote Sensing of Environment, 100 ( 4 ), 486 – 502.
dc.identifier.citedreferenceHuang, X., Chen, X., Zhou, D. K., & Liu, X. ( 2016 ). An observationally based global band‐by‐band surface emissivity dataset for climate and weather simulations. Journal of the Atmospheric Sciences, 73 ( 9 ), 3541 – 3555.
dc.identifier.citedreferenceHurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., … Lipscomb, W. H. ( 2013 ). The Community Earth System Model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94 ( 9 ), 1339 – 1360.
dc.identifier.citedreferenceIacono, M. J., Mlawer, E. J., Clough, S. A., & Morcrette, J. J. ( 2000 ). Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. Journal of Geophysical Research, 105 ( D11 ), 14,873 – 14,890.
dc.identifier.citedreferenceJackson, C. S., Sen, M. K., Huerta, G., Deng, Y., & Bowman, K. P. ( 2008 ). Error reduction and convergence in climate prediction. Journal of Climate, 21 ( 24 ), 6698 – 6709.
dc.identifier.citedreferenceKarlsson, J., & Svensson, G. ( 2013 ). Consequences of poor representation of Arctic sea‐ice albedo and cloud‐radiation interactions in the CMIP5 model ensemble. Geophysical Research Letters, 40, 4374 – 4379. https://doi.org10.1002/grl.50768
dc.identifier.citedreferenceKay, J. E., Hillman, B. R., Klein, S. A., Zhang, Y., Medeiros, B., Pincus, R., … Ackerman, T. P. ( 2012 ). Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. Journal of Climate, 25 ( 15 ), 5190 – 5207.
dc.identifier.citedreferenceKay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., … Holland, M. ( 2015 ). The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bulletin of the American Meteorological Society, 96 ( 8 ), 1333 – 1349.
dc.identifier.citedreferenceLawson, R. P., & Gettelman, A. ( 2014 ). Impact of Antarctic mixed‐phase clouds on climate. Proceedings of the National Academy of Sciences, 111 ( 51 ), 18,156 – 18,161.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.