Show simple item record

Implications of L1 observations for slow solar wind formation by solar reconnection

dc.contributor.authorKepko, L.
dc.contributor.authorViall, N. M.
dc.contributor.authorAntiochos, S. K.
dc.contributor.authorLepri, S. T.
dc.contributor.authorKasper, J. C.
dc.contributor.authorWeberg, M.
dc.date.accessioned2018-03-07T18:24:55Z
dc.date.available2018-03-07T18:24:55Z
dc.date.issued2016-05-16
dc.identifier.citationKepko, L.; Viall, N. M.; Antiochos, S. K.; Lepri, S. T.; Kasper, J. C.; Weberg, M. (2016). "Implications of L1 observations for slow solar wind formation by solar reconnection." Geophysical Research Letters 43(9): 4089-4097.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/142492
dc.description.abstractWhile the source of the fast solar wind is known to be coronal holes, the source of the slow solar wind has remained a mystery. Long time scale trends in the composition and charge states show strong correlations between solar wind velocity and plasma parameters, yet these correlations have proved ineffective in determining the slow wind source. We take advantage of new high time resolution (12 min) measurements of solar wind composition and charge state abundances at L1 and previously identified 90 min quasiperiodic structures to probe the fundamental timescales of slow wind variability. The combination of new high temporal resolution composition measurements and the clearly identified boundaries of the periodic structures allows us to utilize these distinct solar wind parcels as tracers of slow wind origin and acceleration. We find that each 90 min (2000 Mm) parcel of slow wind has near‐constant speed yet exhibits repeatable, systematic charge state and composition variations that span the entire range of statistically determined slow solar wind values. The classic composition‐velocity correlations do not hold on short, approximately hourlong, time scales. Furthermore, the data demonstrate that these structures were created by magnetic reconnection. Our results impose severe new constraints on slow solar wind origin and provide new, compelling evidence that the slow wind results from the sporadic release of closed field plasma via magnetic reconnection at the boundary between open and closed flux in the Sun’s atmosphere.Key PointsThe slow solar wind is formed via magnetic reconnection along the S‐WebPeriodic density structures are formed in the solar atmosphereHigh‐resolution composition data constrain models of slow solar wind formation and release
dc.publisherPergamon Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherslow solar wind formation
dc.subject.otherS‐Web
dc.subject.othersolar wind composition
dc.subject.otherperiodic density structures
dc.subject.othersolar reconnection
dc.titleImplications of L1 observations for slow solar wind formation by solar reconnection
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142492/1/grl54348_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142492/2/grl54348.pdf
dc.identifier.doi10.1002/2016GL068607
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSchwadron, N. A., L. A. Fisk, and T. H. Zurbuchen ( 1999 ), Elemental fractionation in the slow solar wind, Astrophys. J., 521 ( 2 ), 859 – 867.
dc.identifier.citedreferenceMcComas, D. J., R. W. Ebert, H. A. Elliott, B. E. Goldstein, J. T. Gosling, N. A. Schwadron, and R. M. Skoug ( 2008 ), Weaker solar wind from the polar coronal holes and the whole Sun, Geophys. Res. Lett., 35, L18103, doi: 10.1029/2008GL034896.
dc.identifier.citedreferenceNash, A. G., N. R. J. Sheeley, and Y.‐M. Wang ( 1988 ), Mechanisms for the rigid rotation of coronal holes, Sol. Cycle Workshop, 117, 359 – 389.
dc.identifier.citedreferenceOgilvie, K. W., and L. F. Burlaga ( 1974 ), A discussion of interplanetary postshock flows with two examples, J. Geophys. Res., 79 ( 1 ), 2324 – 2330.
dc.identifier.citedreferenceOgilvie, K. W., et al. ( 1995 ), SWE, a comprehensive plasma instrument for the wind spacecraft, Space Sci. Rev., 71 ( 1 ), 55 – 77.
dc.identifier.citedreferenceOwens, M. J., N. U. Crooker, and M. Lockwood ( 2013 ), Solar origin of heliospheric magnetic field inversions: Evidence for coronal loop opening within pseudostreamers, J. Geophys. Res. Space Physics, 118 ( 5 ), 1868 – 1879.
dc.identifier.citedreferenceParker, E. N. ( 1992 ), The X ray corona, the coronal hole, and the heliosphere, J. Geophys. Res., 97, 4311 – 4316, doi: 10.1029/91JA01705.
dc.identifier.citedreferenceRappazzo, A. F., M. Velli, G. Einaudi, and R. B. Dahlburg ( 2005 ), Diamagnetic and expansion effects on the observable properties of the slow solar wind in a coronal streamer, Astrophys. J., 633 ( 1 ), 474 – 488.
dc.identifier.citedreferenceRouillard, A. P., et al. ( 2010a ), Intermittent release of transients in the slow solar wind: 1. Remote sensing observations, J. Geophys. Res., 115, A04103, doi: 10.1029/2009JA014471.
dc.identifier.citedreferenceRouillard, A. P., et al. ( 2010b ), Intermittent release of transients in the slow solar wind: 2. In situ evidence, J. Geophys. Res., 115, A04104, doi: 10.1029/2009JA014472.
dc.identifier.citedreferenceShearer, P., R. von Steiger, J. M. Raines, S. T. Lepri, J. W. Thomas, J. A. Gilbert, E. Landi, and T. H. Zurbuchen ( 2014 ), The solar wind neon abundance observed with ACE/SWICS and Ulysses/SWICS, Astrophys. J., 789 ( 1 ), 60.
dc.identifier.citedreferenceSuess, S. T., A. H. Wang, and S. T. Wu ( 1996 ), Volumetric heating in coronal streamers, J. Geophys. Res., 101 ( A9 ), 19,957 – 19,966.
dc.identifier.citedreferenceVelli, M. ( 1993 ), On the propagation of ideal, linear Alfvén waves in radially stratified stellar atmospheres and winds, Astron. Astrophys., 270, 304 – 314.
dc.identifier.citedreferenceViall, N. M., and A. Vourlidas ( 2015 ), Periodic density structures and the origin of the slow solar wind, Astrophys. J., 807 ( 2 ), 176.
dc.identifier.citedreferenceViall, N. M., H. E. Spence, and J. Kasper ( 2009a ), Are periodic solar wind number density structures formed in the solar corona?, Geophys. Res. Lett., 36, L23102, doi: 10.1029/2009GL041191.
dc.identifier.citedreferenceViall, N. M., L. Kepko, and H. E. Spence ( 2009b ), Relative occurrence rates and connection of discrete frequency oscillations in the solar wind density and dayside magnetosphere, J. Geophys. Res., 114, A01201, doi: 10.1029/2008JA013334.
dc.identifier.citedreferenceVillante, U., P. Francia, M. Vellante, P. Di Giuseppe, A. Nubile, and M. Piersanti ( 2007 ), Long‐period oscillations at discrete frequencies: A comparative analysis of ground, magnetospheric, and interplanetary observations, J. Geophys. Res., 112, A04210, doi: 10.1029/2006JA011896.
dc.identifier.citedreferencevon Steiger, R. ( 2008 ), The solar wind throughout the solar cycle, in The Heliosphere Through the Solar Activity Cycle, p. 41, Springer, Chichester, U. K.
dc.identifier.citedreferenceWang, Y.‐M., and N. R. J. Sheeley ( 1993 ), Understanding the rotation of coronal holes, Astrophys. J., 414, 916 – 927.
dc.identifier.citedreferenceWang, Y.‐M., N. R. J. Sheeley, A. G. Nash, and L. R. Shampine ( 1988 ), The quasi‐rigid rotation of coronal magnetic fields, Astrophys. J., 327, 427 – 450.
dc.identifier.citedreferenceWang, Y.‐M., S. H. Hawley, and N. R. J. Sheeley ( 1996 ), The magnetic nature of coronal holes, Science, 271 ( 5 ), 464 – 469.
dc.identifier.citedreferenceWang, Y.‐M., R. Grappin, E. Robbrecht, and N. R. J. Sheeley ( 2012 ), On the nature of the solar wind from coronal pseudostreamers, Astrophys. J., 749 ( 2 ), 182.
dc.identifier.citedreferenceWithbroe, G. L. ( 1988 ), The temperature structure, mass, and energy flow in the corona and inner solar wind, Astrophys. J., 325, 442 – 467, doi: 10.1086/166015.
dc.identifier.citedreferenceZhao, L., and L. Fisk ( 2011 ), Understanding the behavior of the heliospheric magnetic field and the solar wind during the unusual solar minimum between cycles 23 and 24, Sol. Phys., 274 ( 1 ), 379 – 397.
dc.identifier.citedreferenceZurbuchen, T. H. ( 2002 ), The solar wind composition throughout the solar cycle: A continuum of dynamic states, Geophys. Res. Lett., 29 ( 9 ), 1352, doi: 10.1029/2001GL013946.
dc.identifier.citedreferenceZurbuchen, T. H., L. A. Fisk, G. Gloeckler, and N. A. Schwadron ( 1998 ), Element and isotopic fractionation in closed magnetic structures, Space Sci. Rev., 85 ( 1 ), 397 – 406.
dc.identifier.citedreferenceAellig, M. R., A. J. Lazarus, and J. T. Steinberg ( 2001 ), The solar wind helium abundance: Variation with wind speed and the solar cycle, Geophys. Res. Lett., 28 ( 1 ), 2767 – 2770.
dc.identifier.citedreferenceAntiochos, S. K., Z. Mikic, V. S. Titov, R. Lionello, and J. A. Linker ( 2011 ), A model for the sources of the slow solar wind, Astrophys. J., 731 ( 2 ), 112.
dc.identifier.citedreferenceAxford, W. I., and J. F. McKenzie ( 1992 ), The origin of high speed solar wind streams, in Solar Wind Seven Colloquium, edited by E. Marsch and R. Schwenn, pp. 1 – 5, Pergamon Press, Oxford, U. K.
dc.identifier.citedreferenceBorovsky, J. E. ( 2008 ), Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?, J. Geophys. Res., 113, A08110, doi: 10.1029/2007JA012684.
dc.identifier.citedreferenceBuergi, A., and J. Geiss ( 1986 ), Helium and minor ions in the corona and solar wind—Dynamics and charge states, Sol. Phys., 103, 347 – 383.
dc.identifier.citedreferenceBurlaga, L. F., and N. F. Ness ( 2012 ), Magnetic field fluctuations observed in the heliosheath by Voyager 1 at 114 ± 2 AU during 2010, J. Geophys. Res., 117, A10107, doi: 10.1029/2012JA017894.
dc.identifier.citedreferenceCranmer, S. R., A. A. van Ballegooijen, and R. J. Edgar ( 2007 ), Self‐consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence, Astrophys. J. Suppl. Ser., 171 ( 2 ), 520 – 551.
dc.identifier.citedreferenceCrooker, N. U., M. E. Burton, J. L. Phillips, E. J. Smith, and A. Balogh ( 1996 ), Heliospheric plasma sheets as small‐scale transients, J. Geophys. Res., 101 ( A ), 2467 – 2474.
dc.identifier.citedreferenceCrooker, N. U., J. T. Gosling, and S. W. Kahler ( 2002 ), Reducing heliospheric magnetic flux from coronal mass ejections without disconnection, J. Geophys. Res., 107, 1028, doi: 10.1029/2001JA000236.
dc.identifier.citedreferenceCrooker, N. U., C. L. Huang, S. M. Lamassa, D. E. Larson, S. W. Kahler, and H. E. Spence ( 2004 ), Heliospheric plasma sheets, J. Geophys. Res., 109, A03107, doi: 10.1029/2003JA010170.
dc.identifier.citedreferenceEdmondson, J. K., S. K. Antiochos, C. R. DeVore, B. J. Lynch, and T. H. Zurbuchen ( 2010 ), Interchange reconnection and coronal hole dynamics, Astrophys. J., 714, 517 – 531, doi: 10.1088/0004‐637X/714/1/517.
dc.identifier.citedreferenceEndeve, E., T. E. Holzer, and E. Leer ( 2004 ), Helmet streamers gone unstable: Two‐fluid magnetohydrodynamic models of the solar corona, Astrophys. J., 603, 307 – 321.
dc.identifier.citedreferenceFisk, L. A. ( 2003 ), Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops, J. Geophys. Res., 108 ( A4 ), 1157, doi: 10.1029/2002JA009284.
dc.identifier.citedreferenceFisk, L. A., N. A. Schwadron, and T. H. Zurbuchen ( 1998 ), On the slow solar wind, Space Sci. Rev., 86, 51 – 60, doi: 10.1023/A:1005015527146.
dc.identifier.citedreferenceFisk, L. A., G. Gloeckler, T. H. Zurbuchen, J. Geiss, and N. A. Schwadron ( 2003 ), Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops, in SOLAR WIND TEN: Proceedings of the Tenth International Solar Wind Conference. AIP Conference Proceedings, pp. 287 – 292, Department of Atmospheric, Oceanic, and Space Sciences, Univ. of Michigan, Ann Arbor, Mich.
dc.identifier.citedreferenceGeiss, J., G. Gloeckler, and R. von Steiger ( 1995a ), Origin of the solar wind from composition data, Space Sci. Rev., 72 ( 1 ), 49 – 60.
dc.identifier.citedreferenceGeiss, J., et al. ( 1995b ), The southern high‐speed stream: Results from the SWICS instrument on Ulysses, Science, 268 ( 5 ), 1033 – 1036.
dc.identifier.citedreferenceGloeckler, G., et al. ( 1998 ), Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft, Space Sci. Rev., 86 ( 1 ), 497 – 539.
dc.identifier.citedreferenceGloeckler, G., T. H. Zurbuchen, and J. Geiss ( 2003 ), Implications of the observed anticorrelation between solar wind speed and coronal electron temperature, J. Geophys. Res., 108 ( A4 ), 1158, doi: 10.1029/2002JA009286.
dc.identifier.citedreferenceHollweg, J. V., and P. A. Isenberg ( 2002 ), Generation of the fast solar wind: A review with emphasis on the resonant cyclotron interaction, J. Geophys. Res., 107, 1147, doi: 10.1029/2001JA000270.
dc.identifier.citedreferenceKasper, J. C., M. L. Stevens, A. J. Lazarus, J. T. Steinberg, and K. W. Ogilvie ( 2007 ), Solar wind helium abundance as a function of speed and heliographic latitude: Variation through a solar cycle, Astrophys. J., 660 ( 1 ), 901 – 910.
dc.identifier.citedreferenceKepko, L., and H. E. Spence ( 2003 ), Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations, J. Geophys. Res., 108 ( A ), 1257, doi: 10.1029/2002JA009676.
dc.identifier.citedreferenceKepko, L., H. E. Spence, and H. J. Singer ( 2002 ), ULF waves in the solar wind as direct drivers of magnetospheric pulsations, Geophys. Res. Lett., 29 ( 8 ), 1197 – 1200, doi: 10.1029/2001GL014405.
dc.identifier.citedreferenceLin, R. P., et al. ( 1995 ), A three‐dimensional plasma and energetic particle investigation for the Wind spacecraft, Space Sci. Rev., 71 ( 1 ), 125 – 153.
dc.identifier.citedreferenceLionello, R., P. Riley, J. A. Linker, and Z. Mikić ( 2005 ), The effects of differential rotation on the magnetic structure of the solar corona: Magnetohydrodynamic simulations, Astrophys. J., 625 ( 1 ), 463 – 473.
dc.identifier.citedreferenceMacNeice, P., B. Elliott, and A. Acebal ( 2011 ), Validation of community models: 3. Tracing field lines in heliospheric models, Space Weather, 9, S10003, doi: 10.1029/2011SW000665.
dc.identifier.citedreferenceMcComas, D. J., et al. ( 1998a ), Ulysses’ return to the slow solar wind, Geophys. Res. Lett., 25 ( 1 ), 1 – 4.
dc.identifier.citedreferenceMcComas, D. J., S. J. Bame, P. Barker, W. C. Feldman, J. L. Phillips, P. Riley, and J. W. Griffee ( 1998b ), Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer, Space Sci. Rev., 86 ( 1 ), 563 – 612.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.