Show simple item record

ArcR modulates biofilm formation in the dental plaque colonizer Streptococcus gordonii

dc.contributor.authorRobinson, J.C.
dc.contributor.authorRostami, N.
dc.contributor.authorCasement, J.
dc.contributor.authorVollmer, W.
dc.contributor.authorRickard, A.H.
dc.contributor.authorJakubovics, N.S.
dc.date.accessioned2018-03-07T18:25:09Z
dc.date.available2019-05-13T14:45:24Zen
dc.date.issued2018-04
dc.identifier.citationRobinson, J.C.; Rostami, N.; Casement, J.; Vollmer, W.; Rickard, A.H.; Jakubovics, N.S. (2018). "ArcR modulates biofilm formation in the dental plaque colonizer Streptococcus gordonii." Molecular Oral Microbiology 33(2): 143-154.
dc.identifier.issn2041-1006
dc.identifier.issn2041-1014
dc.identifier.urihttps://hdl.handle.net/2027.42/142503
dc.publisherCold Spring Harbor Laboratory Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othermicroarray
dc.subject.otheroral streptococci
dc.subject.othersaliva
dc.subject.otherArcR regulon
dc.subject.otherdental plaque
dc.titleArcR modulates biofilm formation in the dental plaque colonizer Streptococcus gordonii
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142503/1/omi12207_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142503/2/omi12207.pdf
dc.identifier.doi10.1111/omi.12207
dc.identifier.sourceMolecular Oral Microbiology
dc.identifier.citedreferenceDe Jong A, Pietersma H, Cordes M, Kuipers OP, Kok J. PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genom. 2012; 13: 299.
dc.identifier.citedreferenceYu NY, Wagner JR, Laird MR, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010; 26: 1608 ‐ 1615.
dc.identifier.citedreferenceKristich CJ, Nguyen VT, Le T, Barnes AM, Grindle S, Dunny GM. Development and use of an efficient system for random mariner transposon mutagenesis to identify novel genetic determinants of biofilm formation in the core Enterococcus faecalis genome. Appl Environ Microbiol. 2008; 74: 3377 ‐ 3386.
dc.identifier.citedreferenceFrank KL, Guiton PS, Barnes AM, et al. AhrC and Eep are biofilm infection‐associated virulence factors in Enterococcus faecalis. Infect Immun. 2013; 81: 1696 ‐ 1708.
dc.identifier.citedreferenceBarcelona‐Andres B, Marina A, Rubio V. Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis. J Bacteriol. 2002; 184: 6289 ‐ 6300.
dc.identifier.citedreferenceCho S, Cho YB, Kang TJ, Kim SC, Palsson B, Cho BK. The architecture of ArgR‐DNA complexes at the genome‐scale in Escherichia coli. Nucleic Acids Res. 2015; 43: 3079 ‐ 3088.
dc.identifier.citedreferenceLarsen R, Kok J, Kuipers OP. Interaction between ArgR and AhrC controls regulation of arginine metabolism in Lactococcus lactis. J Biol Chem. 2005; 280: 19319 ‐ 19330.
dc.identifier.citedreferenceKloosterman TG, Kuipers OP. Regulation of arginine acquisition and virulence gene expression in the human pathogen Streptococcus pneumoniae by transcription regulators ArgR1 and AhrC. J Biol Chem. 2011; 286: 44594 ‐ 44605.
dc.identifier.citedreferenceLarsen R, van Hijum SA, Martinussen J, Kuipers OP, Kok J. Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons. Appl Environ Microbiol. 2008; 74: 4768 ‐ 4771.
dc.identifier.citedreferenceJakubovics NS, Smith AW, Jenkinson HF. Expression of the virulence‐related Sca (Mn 2+ ) permease in Streptococcus gordonii is regulated by a diphtheria toxin metallorepressor‐like protein ScaR. Mol Microbiol. 2000; 38: 140 ‐ 153.
dc.identifier.citedreferenceCho BK, Federowicz S, Park YS, Zengler K, Palsson BO. Deciphering the transcriptional regulatory logic of amino acid metabolism. Nat Chem Biol. 2012; 8: 65 ‐ 71.
dc.identifier.citedreferenceZeng L, Dong Y, Burne RA. Characterization of cis‐acting sites controlling arginine deiminase gene expression in Streptococcus gordonii. J Bacteriol. 2006; 188: 941 ‐ 949.
dc.identifier.citedreferenceLiu Y, Dong Y, Chen YY, Burne RA. Environmental and growth phase regulation of the Streptococcus gordonii arginine deiminase genes. Appl Environ Microbiol. 2008; 74: 5023 ‐ 5030.
dc.identifier.citedreferenceDong Y, Chen YY, Snyder JA, Burne RA. Isolation and molecular analysis of the gene cluster for the arginine deiminase system from Streptococcus gordonii DL1. Appl Environ Microbiol. 2002; 68: 5549 ‐ 5553.
dc.identifier.citedreferenceJozefczuk J, Adjaye J. Quantitative real‐time PCR‐based analysis of gene expression. Methods Enzymol. 2011; 500: 99 ‐ 109.
dc.identifier.citedreferenceMoye ZD, Zeng L, Burne RA. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans. J Oral Microbiol. 2014; 6.doi: 10.3402/jom.v3406.24878.
dc.identifier.citedreferenceHendrickson EL, Wang TS, Dickinson BC, et al. Proteomics of Streptococcus gordonii within a model developing oral microbial community. BMC Microbiol. 2012; 12: 211.
dc.identifier.citedreferenceLoo CY, Mitrakul K, Voss IB, Hughes CV, Ganeshkumar N. Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation. J Bacteriol. 2003; 185: 6241 ‐ 6254.
dc.identifier.citedreferenceTong H, Zeng L, Burne RA. The EIIABMan phosphotransferase system permease regulates carbohydrate catabolite repression in Streptococcus gordonii. Appl Environ Microbiol. 2011; 77: 1957 ‐ 1965.
dc.identifier.citedreferenceKilic AO, Tao L, Zhang Y, Lei Y, Khammanivong A, Herzberg MC. Involvement of Streptococcus gordonii β‐glucoside metabolism systems in adhesion, biofilm formation, and in vivo gene expression. J Bacteriol. 2004; 186: 4246 ‐ 4253.
dc.identifier.citedreferencePei J, Mitchell DA, Dixon JE, Grishin NV. Expansion of type II CAAX proteases reveals evolutionary origin of γ‐secretase subunit APH‐1. J Mol Biol. 2011; 410: 18 ‐ 26.
dc.identifier.citedreferenceZhang Y, Whiteley M, Kreth J, et al. The two‐component system BfrAB regulates expression of ABC transporters in Streptococcus gordonii and Streptococcus sanguinis. Microbiology. 2009; 155: 165 ‐ 173.
dc.identifier.citedreferenceZhang JQ, Hou XH, Song XY, Ma XB, Zhao YX, Zhang SY. ClpP affects biofilm formation of Streptococcus mutans differently in the presence of cariogenic carbohydrates through regulating gtfBC and ftf. Curr Microbiol. 2015; 70: 716 ‐ 723.
dc.identifier.citedreferenceDesai BV, Morrison DA. Transformation in Streptococcus pneumoniae: formation of eclipse complex in a coiA mutant implicates CoiA in genetic recombination. Mol Microbiol. 2007; 63: 1107 ‐ 1117.
dc.identifier.citedreferenceYeats C, Bentley S, Bateman A. New knowledge from old: in silico discovery of novel protein domains in Streptomyces coelicolor. BMC Microbiol. 2003; 3: 3.
dc.identifier.citedreferenceJakubovics NS. Intermicrobial interactions as a driver for community composition and stratification of oral biofilms. J Mol Biol. 2015; 427: 3662 ‐ 3675.
dc.identifier.citedreferenceNobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res. 2011; 90: 1271 ‐ 1278.
dc.identifier.citedreferenceJakubovics NS, Yassin SA, Rickard AH. Community interactions of oral streptococci. Adv Appl Microbiol. 2014; 87: 43 ‐ 110.
dc.identifier.citedreferenceKreth J, Merritt J, Qi F. Bacterial and host interactions of oral streptococci. DNA Cell Biol. 2009; 28: 397 ‐ 403.
dc.identifier.citedreferenceZhou P, Liu J, Li X, Takahashi Y, Qi F. The sialic acid binding protein, Hsa, in Streptococcus gordonii DL1 also mediates intergeneric coaggregation with Veillonella species. PLoS ONE. 2015; 10: e0143898.
dc.identifier.citedreferenceBack CR, Douglas SK, Emerson JE, Nobbs AH, Jenkinson HF. Streptococcus gordonii DL1 adhesin SspB V‐region mediates coaggregation via receptor polysaccharide of Actinomyces oris T14V. Mol Oral Microbiol. 2015; 30: 411 ‐ 424.
dc.identifier.citedreferenceMcNab R, Forbes H, Handley PS, Loach DM, Tannock GW, Jenkinson HF. Cell wall‐anchored CshA polypeptide (259 kilodaltons) in Streptococcus gordonii forms surface fibrils that confer hydrophobic and adhesive properties. J Bacteriol. 1999; 181: 3087 ‐ 3095.
dc.identifier.citedreferenceBor DH, Woolhandler S, Nardin R, Brusch J, Himmelstein DU. Infective endocarditis in the U.S., 1998‐2009: a nationwide study. PLoS ONE. 2013; 8: e60033.
dc.identifier.citedreferenceHuang X, Schulte RM, Burne RA, Nascimento MM. Characterization of the arginolytic microflora provides insights into pH homeostasis in human oral biofilms. Caries Res. 2015; 49: 165 ‐ 176.
dc.identifier.citedreferenceNascimento MM, Browngardt C, Xiaohui X, Klepac‐Ceraj V, Paster BJ, Burne RA. The effect of arginine on oral biofilm communities. Mol Oral Microbiol. 2014; 29: 45 ‐ 54.
dc.identifier.citedreferenceNascimento MM, Liu Y, Kalra R, et al. Oral arginine metabolism may decrease the risk for dental caries in children. J Dent Res. 2013; 92: 604 ‐ 608.
dc.identifier.citedreferenceHo MH, Lamont RJ, Xie H. Identification of Streptococcus cristatus peptides that repress expression of virulence genes in Porphyromonas gingivalis. Sci Rep. 2017; 7: 1413.
dc.identifier.citedreferenceSakanaka A, Kuboniwa M, Takeuchi H, Hashino E, Amano A. Arginine‐ornithine antiporter ArcD controls arginine metabolism and interspecies biofilm development of Streptococcus gordonii. J Biol Chem. 2015; 290: 21185 ‐ 21198.
dc.identifier.citedreferenceEdwards AM, Grossman TJ, Rudney JD. Association of a high‐molecular weight arginine‐binding protein of Fusobacterium nucleatum ATCC 10953 with adhesion to secretory immunoglobulin A and coaggregation with Streptococcus cristatus. Oral Microbiol Immunol. 2007; 22: 217 ‐ 224.
dc.identifier.citedreferenceKaplan CW, Lux R, Haake SK, Shi W. The Fusobacterium nucleatum outer membrane protein RadD is an arginine‐inhibitable adhesin required for inter‐species adherence and the structured architecture of multispecies biofilm. Mol Microbiol. 2009; 71: 35 ‐ 47.
dc.identifier.citedreferenceKolderman E, Bettampadi D, Samarian D, et al. l ‐Arginine destabilizes oral multi‐species biofilm communities developed in human saliva. PLoS ONE. 2015; 10: e0121835.
dc.identifier.citedreferenceTada A, Nakayama‐Imaohji H, Yamasaki H, et al. Cleansing effect of acidic l ‐arginine on human oral biofilm. BMC Oral Health. 2016; 16: 40.
dc.identifier.citedreferenceHuang X, Zhang K, Deng M, et al. Effect of arginine on the growth and biofilm formation of oral bacteria. Arch Oral Biol. 2017; 82: 256 ‐ 262.
dc.identifier.citedreferenceJakubovics NS, Robinson JC, Samarian DS, et al. Critical roles of arginine in growth and biofilm development by Streptococcus gordonii. Mol Microbiol. 2015; 97: 281 ‐ 300.
dc.identifier.citedreferenceJesionowski AM, Mansfield JM, Brittan JL, Jenkinson HF, Vickerman MM. Transcriptome analysis of Streptococcus gordonii Challis DL1 indicates a role for the biofilm‐associated fruRBA operon in response to Candida albicans. Mol Oral Microbiol. 2016; 31: 314 ‐ 328.
dc.identifier.citedreferenceJakubovics NS, Gill SR, Iobst SE, Vickerman MM, Kolenbrander PE. Regulation of gene expression in a mixed‐genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol. 2008; 190: 3646 ‐ 3657.
dc.identifier.citedreferenceSambrook J, Russell DW. Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 2001.
dc.identifier.citedreferenceHansen MC, Palmer RJ Jr, Udsen C, White DC, Molin S. Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology. 2001; 147: 1383 ‐ 1391.
dc.identifier.citedreferenceEgland PG, Palmer RJ Jr, Kolenbrander PE. Interspecies communication in Streptococcus gordonii‐Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc Natl Acad Sci U S A. 2004; 101: 16917 ‐ 16922.
dc.identifier.citedreferenceShields RC, Mokhtar N, Ford M, et al. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis. PLoS ONE. 2013; 8: e55339.
dc.identifier.citedreferenceBenjamini Y, Hochberg Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Stat Soc Ser B‐Methodol. 1995; 57: 289 ‐ 300.
dc.identifier.citedreferenceDel Carratore F, Jankevics A, Eisinga R, Heskes T, Hong F, Breitling R. RankProd 2.0: a refactored Bioconductor package for detecting differentially expressed features in molecular profiling datasets. Bioinformatics. 2017; 33: 2774 ‐ 2775.
dc.identifier.citedreferenceR Core Team. R: A language and environment for statistical computing. 2017; https://www.R-project.org/. Accessed July 1, 2017.
dc.identifier.citedreferenceGu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016; 32: 2847 ‐ 2849.
dc.identifier.citedreferenceManimaran S, Selby HM, Okrah K, et al. BatchQC: interactive software for evaluating sample and batch effects in genomic data. Bioinformatics. 2016; 32: 3836 ‐ 3838.
dc.identifier.citedreferencePetersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011; 8: 785 ‐ 786.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.