Show simple item record

Bicarbonate Recycling by HIF‐1–Dependent Carbonic Anhydrase Isoforms 9 and 12 Is Critical in Maintaining Intracellular pH and Viability of Nucleus Pulposus Cells

dc.contributor.authorSilagi, Elizabeth S
dc.contributor.authorSchoepflin, Zachary R
dc.contributor.authorSeifert, Erin L
dc.contributor.authorMerceron, Christophe
dc.contributor.authorSchipani, Ernestina
dc.contributor.authorShapiro, Irving M
dc.contributor.authorRisbud, Makarand V
dc.date.accessioned2018-03-07T18:25:16Z
dc.date.available2019-04-01T15:01:10Zen
dc.date.issued2018-02
dc.identifier.citationSilagi, Elizabeth S; Schoepflin, Zachary R; Seifert, Erin L; Merceron, Christophe; Schipani, Ernestina; Shapiro, Irving M; Risbud, Makarand V (2018). "Bicarbonate Recycling by HIF‐1–Dependent Carbonic Anhydrase Isoforms 9 and 12 Is Critical in Maintaining Intracellular pH and Viability of Nucleus Pulposus Cells." Journal of Bone and Mineral Research 33(2): 338-355.
dc.identifier.issn0884-0431
dc.identifier.issn1523-4681
dc.identifier.urihttps://hdl.handle.net/2027.42/142506
dc.description.abstractIntervertebral disc degeneration is a ubiquitous condition closely linked to chronic low‐back pain. The health of the avascular nucleus pulposus (NP) plays a crucial role in the development of this pathology. We tested the hypothesis that a network comprising HIF‐1α, carbonic anhydrase (CA) 9 and 12 isoforms, and sodium‐coupled bicarbonate cotransporters (NBCs) buffer intracellular pH through coordinated bicarbonate recycling. Contrary to the current understanding of NP cell metabolism, analysis of metabolic‐flux data from Seahorse XF analyzer showed that CO2 hydration contributes a significant source of extracellular proton production in NP cells, with a smaller input from glycolysis. Because enzymatic hydration of CO2 is catalyzed by plasma membrane‐associated CAs we measured their expression and function in NP tissue. NP cells robustly expressed isoforms CA9/12, which were hypoxia‐inducible. In addition to increased mRNA stability under hypoxia, we observed binding of HIF‐1α to select hypoxia‐responsive elements on CA9/12 promoters using genomic chromatin immunoprecipitation. Importantly, in vitro loss of function studies and analysis of discs from NP‐specific HIF‐1α null mice confirmed the dependency of CA9/12 expression on HIF‐1α. As expected, inhibition of CA activity decreased extracellular acidification rate independent of changes in HIF activity or lactate/H+ efflux. Surprisingly, CA inhibition resulted in a concomitant decrease in intracellular pH that was mirrored by inhibition of sodium‐bicarbonate importers. These results suggested that extracellular bicarbonate generated by CA9/12 is recycled to buffer cytosolic pH fluctuations. Importantly, long‐term intracellular acidification from CA inhibition lead to compromised cell viability, suggesting that plasma‐membrane proton extrusion pathways alone are not sufficient to maintain homeostatic pH in NP cells. Taken together, our studies show for the first time that bicarbonate buffering through the HIF‐1α–CA axis is critical for NP cell survival in the hypoxic niche of the intervertebral disc. © 2017 American Society for Bone and Mineral Research.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherINTERVERTEBRAL DISC
dc.subject.otherPH REGULATION
dc.subject.otherHIF‐1
dc.subject.otherCELL/TISSUE SIGNALING–TRANSCRIPTION FACTORS
dc.subject.otherCHONDROCYTE AND CARTILAGE BIOLOGY
dc.subject.otherNUCLEUS PULPOSUS
dc.subject.otherCARBONIC ANHYDRASE
dc.titleBicarbonate Recycling by HIF‐1–Dependent Carbonic Anhydrase Isoforms 9 and 12 Is Critical in Maintaining Intracellular pH and Viability of Nucleus Pulposus Cells
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialities
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142506/1/jbmr3293.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142506/2/jbmr3293-sup-0001-SuppData-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142506/3/jbmr3293_am.pdf
dc.identifier.doi10.1002/jbmr.3293
dc.identifier.sourceJournal of Bone and Mineral Research
dc.identifier.citedreferenceChen S, Fang XQ, Wang Q, et al. PHD/HIF‐1 upregulates CA12 to protect against degenerative disc disease: a human sample, in vitro and ex vivo study. Lab Invest. 2016; 96: 561 – 9. DOI: 10.1038/labinvest.2016.32.
dc.identifier.citedreferenceŠvastová E, Hulíková A, Rafajová M, et al. Hypoxia activates the capacity of tumor‐associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett. 2004; 577: 439 – 45.
dc.identifier.citedreferenceKallio H, Pastorekova S, Pastorek J, et al. Expression of carbonic anhydrases IX and XII during mouse embryonic development. BMC Dev Biol. 2006; 6: 22.
dc.identifier.citedreferenceKivelä A, Parkkila S, Saarnio J, et al. Expression of a novel transmembrane carbonic anhydrase isozyme XII in normal human gut and colorectal tumors. Am J Pathol. 2000; 156: 577 – 84.
dc.identifier.citedreferenceCordat E, Casey JR. Bicarbonate transport in cell physiology and disease. Biochem J. 2009; 417: 423 – 39.
dc.identifier.citedreferenceBoron WF, Chen L, Parker MD. Modular structure of sodium‐coupled bicarbonate transporters. J Exp Biol. 2009; 212: 1697 – 706.
dc.identifier.citedreferenceSchoepflin ZR, Shapiro IM, Risbud MV. Class I and IIa HDACs mediate HIF‐1α stability through PHD2‐dependent mechanism while HDAC6, a class IIb member, promotes HIF‐1α transcriptional activity in nucleus pulposus cells of the intervertebral disc. J Bone Miner Res. 2016; 31: 1287 – 99. DOI: 10.1002/jbmr.2787.
dc.identifier.citedreferenceGogate SS, Fujita N, Skubutyte R, Shapiro IM, Risbud MV. Tonicity enhancer binding protein (TonEBP) and hypoxia‐inducible factor (HIF) coordinate heat shock protein 70 (Hsp70) expression in hypoxic nucleus pulposus cells: role of Hsp70 in HIF‐1α degradation. J Bone Miner Res. 2012; 27: 1106 – 17.
dc.identifier.citedreferenceTran CM, Fujita N, Huang BL, et al. Hypoxia‐inducible factor (HIF)‐1alpha and CCN2 form a regulatory circuit in hypoxic nucleus pulposus cells: CCN2 suppresses HIF‐1alpha level and transcriptional activity. J Biol Chem. 2013; 288: 12654 – 66.
dc.identifier.citedreferenceSuyama K, Silagi ES, Choi H, et al. Circadian factors BMAL1 and RORα control HIF‐1α transcriptional activity in nucleus pulposus cells: implications in maintenance of intervertebral disc health. Oncotarget. 2016; 7: 23056 – 71.
dc.identifier.citedreferenceFujita N, Gogate SS, Chiba K, Toyama Y, Shapiro IM, Risbud MV. Prolyl hydroxylase 3 (PHD3) modulates catabolic effects of tumor necrosis factor‐alpha (TNF‐α) on cells of the nucleus pulposus through co‐activation of nuclear factor kappa‐B (NF‐κB)/p65 signaling. J Biol Chem. 2012; 287: 39942 – 53.
dc.identifier.citedreferencePower KA, Grad S, Rutges JP, et al. Identification of cell surface‐specific markers to target human nucleus pulposus cells: expression of carbonic anhydrase XII varies with age and degeneration. Arthritis Rheum. 2011; 63: 3876 – 86.
dc.identifier.citedreferencePacchiano F, Carta F, McDonald PC, et al. Ureido‐substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J Med Chem. 2011; 54: 1896 – 902.
dc.identifier.citedreferenceCsordás G, Golenár T, Seifert EL, et al. MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca2+ uniporter. Cell Metab. 2013; 17: 976 – 87.
dc.identifier.citedreferenceRisbud MV, Schoepflin ZR, Mwale F, et al. Defining the phenotype of young healthy nucleus pulposus cells: recommendations of the Spine Research Interest Group at the 2014 annual ORS meeting. J Orthop Res. 2015; 33: 283 – 93.
dc.identifier.citedreferenceMerceron C, Mangiavini L, Robling A, et al. Loss of HIF‐1α in the notochord results in cell death and complete disappearance of the nucleus pulposus. PLoS One. 2014; 9 ( 10 ): e110768. DOI: 10.1371/journal.pone.0110768.
dc.identifier.citedreferenceMathelier A, Fornes O, Arenillas DJ, et al. JASPAR 2016: a major expansion and update of the open‐access database of transcription factor binding profiles. Nucleic Acids Res. 2016; 44 ( D1 ): D110 – 5. DOI: 10.1093/nar/gkv1176.
dc.identifier.citedreferencevan der Windt GJW, Chang CH, Pearce EL. Measuring bioenergetics in T cells using a Seahorse Extracellular Flux Analyzer. Curr Protoc Immunol. 2016; 113: 16B.1–16B.14. DOI: 10.1002/0471142735.im0316bs113.
dc.identifier.citedreferenceTan B, Xiao H, Li F, Zeng L, Yin Y. The profiles of mitochondrial respiration and glycolysis using extracellular flux analysis in porcine enterocyte IPEC‐J2. Animal Nutrition. 2015; 1: 239 – 43. DOI: 10.1016/j.aninu.2015.08.004.
dc.identifier.citedreferenceSupuran CT. Carbonic anhydrase inhibitors. Bioorg Med Chem Lett. 2010; 20: 3467 – 74.
dc.identifier.citedreferenceHarju AK, Bootorabi F, Kuuslahti M, Supuran CT, Parkkila S. Carbonic anhydrase III: a neglected isozyme is stepping into the limelight. J Enzyme Inhib Med Chem. 2012; 28: 1 – 9.
dc.identifier.citedreferenceDimmer KS, Friedrich B, Lang F, Deitmer JW, Bröer S. The low‐affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J. 2000; 350 ( Pt 1 ): 219 – 27.
dc.identifier.citedreferenceMorgan PE, Pastorekova S, Stuart‐Tilley AK, Alper SL, Casey JR. Interactions of transmembrane carbonic anhydrase, CAIX, with bicarbonate transporters. Am J Physiol Cell Physiol. 2007; 293: C738 – 48.
dc.identifier.citedreferenceTüreci O, Sahin U, Vollmar E, et al. Human carbonic anhydrase XII: cDNA cloning, expression, and chromosomal localization of a carbonic anhydrase gene that is overexpressed in some renal cell cancers. Proc Natl Acad Sci U S A. 1998; 95: 7608 – 13.
dc.identifier.citedreferenceKaluz S, Kaluzová M, Liao SY, Lerman M, Stanbridge EJ. Transcriptional control of the tumor‐ and hypoxia‐marker carbonic anhydrase 9: a one transcription factor (HIF‐1) show ? Biochim Biophys Acta. 2009; 1795: 162 – 72.
dc.identifier.citedreferenceVince JW, Reithmeier RA. Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte C1 – /HCO 3 – exchanger. J Biol Chem. 1998;273, 28430 – 7.
dc.identifier.citedreferenceJamali S, Klier M, Ames S, et al. Hypoxia‐induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non‐catalytic function. Sci Rep. 2015; 5: 13605.
dc.identifier.citedreferenceStridh MH, Alt MD, Wittmann S, et al. Lactate flux in astrocytes is enhanced by a non‐catalytic action of carbonic anhydrase II. J Physiol. 2012; 590: 2333 – 51.
dc.identifier.citedreferenceKatz JN. Lumbar disc disorders and low‐back pain: socioeconomic factors and consequences. J Bone Joint Surg Am. 2006; 88 Suppl 2: 21 – 4.
dc.identifier.citedreferenceMurray CJ, Atkinson C, Bhalla K, et al.; U.S. Burden of Disease Collaborators. The state of US Health, 1990‐2010: burden of diseases, injuries, and risk factors. JAMA. 2013; 310: 591 – 608.
dc.identifier.citedreferenceJohnson ZI, Shapiro IM, Risbud MV. Extracellular osmolarity regulates matrix homeostasis in the intervertebral disc and articular cartilage: evolving role of TonEBP. Matrix Biol. 2014; 40: 10 – 6.
dc.identifier.citedreferenceRisbud MV, Guttapalli A, Stokes DG, et al. Nucleus pulposus cells express HIF‐1 alpha under normoxic culture conditions: a metabolic adaptation to the intervertebral disc microenvironment. J Cell Biochem. 2006; 98: 152 – 9.
dc.identifier.citedreferenceFujita N, Chiba K, Shapiro IM, Risbud MV. HIF‐1alpha and HIF‐2alpha degradation is differentially regulated in nucleus pulposus cells of the intervertebral disc. J Bone Miner Res. 2012; 27: 401 – 12.
dc.identifier.citedreferenceGruber HE, Ashraf N, Kilburn J, et al. Vertebral endplate architecture and vascularization: application of micro‐computerized tomography, a vascular tracer, and immunocytochemistry in analyses of disc degeneration in the aging sand rat. Spine (Phila Pa 1976). 2005; 30: 2593 – 600.
dc.identifier.citedreferenceBibby SR, Jones DA, Ripley RM, Urban JP. Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine (Phila Pa 1976). 2005; 30: 487 – 96.
dc.identifier.citedreferenceUrban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine (Phila Pa 1976). 2004; 29: 2700 – 9.
dc.identifier.citedreferenceBartels EM, Fairbank JC, Winlove CP, Urban JP. Oxygen and lactate concentrations measured in vivo in the intervertebral discs of patients with scoliosis and back pain. Spine (Phila Pa 1976). 1998; 23: 1 – 7; discussion 8.
dc.identifier.citedreferenceAgrawal A, Guttapalli A, Narayan S, Albert TJ, Shapiro IM, Risbud MV. Normoxic stabilization of HIF‐1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol. 2007; 293: C621 – 31.
dc.identifier.citedreferenceRazaq S, Urban JP, Wilkins RJ. Regulation of intracellular pH by bovine intervertebral disc cells. Cell Physiol Biochem. 2000; 10: 109 – 15.
dc.identifier.citedreferenceDiamant B, Karlsson J, Nachemson A. Correlation between lactate levels and pH in discs of patients with lumbar rhizopathies. Experientia. 1968; 24: 1195 – 6.
dc.identifier.citedreferenceNachemson A. Intradiscal measurements of pH in patients with lumbar rhizopathies. Acta Orthop Scand. 1969; 40: 23 – 42.
dc.identifier.citedreferenceOhshima H, Urban JP. The effect of lactate and pH on proteoglycan and protein synthesis rates in the intervertebral disc. Spine (Phila Pa 1976). 1992; 17: 1079 – 82.
dc.identifier.citedreferenceRazaq S, Wilkins RJ, Urban JP. The effect of extracellular pH on matrix turnover by cells of the bovine nucleus pulposus. Eur Spine J. 2003; 12: 341 – 9.
dc.identifier.citedreferenceGilbert HT, Hodson N, Baird P, Richardson SM, Hoyland JA. Acidic pH promotes intervertebral disc degeneration: acid‐sensing ion channel ‐3 as a potential therapeutic target. Sci Rep. 2016; 6: 37360.
dc.identifier.citedreferenceSwietach P, Vaughan‐Jones RD, Harris AL. Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev. 2007; 26: 299 – 310.
dc.identifier.citedreferenceSwietach P, Hulikova A, Vaughan‐Jones RD, Harris AL. New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene. 2010; 29: 6509 – 21.
dc.identifier.citedreferenceMcIntyre A, Hulikova A, Ledaki I, et al. Disrupting hypoxia‐induced bicarbonate transport acidifies tumor cells and suppresses tumor growth. Cancer Res. 2016; 76: 3744 – 55.
dc.identifier.citedreferenceMcMurtrie HL, Cleary HJ, Alvarez BV, et al. The bicarbonate transport metabolon. J. Enzyme Inhib Med Chem. 2004; 19: 231 – 6.
dc.identifier.citedreferenceParks SK, Chiche J, Pouysségur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer. 2013; 13: 611 – 23.
dc.identifier.citedreferenceCasey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol. 2010; 11: 50 – 61.
dc.identifier.citedreferenceMaren TH. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967; 47: 595 – 781.
dc.identifier.citedreferenceMookerjee SA, Goncalves RL, Gerencser AA, Nicholls DG, Brand MD. The contributions of respiration and glycolysis to extracellular acid production. Biochim Biophys Acta. 2015; 1847: 171 – 81.
dc.identifier.citedreferenceJohnson ZI, Shapiro IM, Risbud MV. RNA sequencing reveals a role of TonEBP in regulation of pro‐inflammatory genes in response to hyperosmolarity in healthy nucleus pulposus cells: a homeostatic response ? J Biol Chem. 2016; 291 ( 52 ): 26686 – 97. DOI: 10.1074/jbc.M116.757732.
dc.identifier.citedreferenceMarkova DZ, Kepler CK, Addya S, et al. An organ culture system to model early degenerative changes of the intervertebral disc II: profiling global gene expression changes. Arthritis Res Ther. 2013; 15: R121.
dc.identifier.citedreferenceKao TH, Peng YJ, Tsou HK, Salter DM, Lee HS. Nerve growth factor promotes expression of novel genes in intervertebral disc cells that regulate tissue degradation: laboratory investigation. J Neurosurg Spine. 2014; 21: 653 – 61.
dc.identifier.citedreferenceMiyamoto T, Muneta T, Tabuchi T, et al. Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase‐related genes in nucleus pulposus cells in rabbits. Arthritis Res Ther. 2010; 12: R206.
dc.identifier.citedreferenceChiche J, Ilc K, Laferrière J, et al. Hypoxia‐inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 2009; 69: 358 – 68.
dc.identifier.citedreferenceWykoff CC, Beasley NJ, Watson PH, et al. Hypoxia‐inducible expression of tumor‐associated carbonic anhydrases. Cancer Res. 2000; 60 ( 24 ): 7075 – 83.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.