Show simple item record

Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift

dc.contributor.authorKort, E. A.
dc.contributor.authorSmith, M. L.
dc.contributor.authorMurray, L. T.
dc.contributor.authorGvakharia, A.
dc.contributor.authorBrandt, A. R.
dc.contributor.authorPeischl, J.
dc.contributor.authorRyerson, T. B.
dc.contributor.authorSweeney, C.
dc.contributor.authorTravis, K.
dc.date.accessioned2018-03-07T18:25:22Z
dc.date.available2018-03-07T18:25:22Z
dc.date.issued2016-05-16
dc.identifier.citationKort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K. (2016). "Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift." Geophysical Research Letters 43(9): 4617-4623.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/142509
dc.description.abstractEthane is the second most abundant atmospheric hydrocarbon, exerts a strong influence on tropospheric ozone, and reduces the atmosphere’s oxidative capacity. Global observations showed declining ethane abundances from 1984 to 2010, while a regional measurement indicated increasing levels since 2009, with the reason for this subject to speculation. The Bakken shale is an oil and gas‐producing formation centered in North Dakota that experienced a rapid increase in production beginning in 2010. We use airborne data collected over the North Dakota portion of the Bakken shale in 2014 to calculate ethane emissions of 0.23 ± 0.07 (2σ) Tg/yr, equivalent to 1–3% of total global sources. Emissions of this magnitude impact air quality via concurrent increases in tropospheric ozone. This recently developed large ethane source from one location illustrates the key role of shale oil and gas production in rising global ethane levels.Key PointsThe Bakken shale in North Dakota accounted for 1–3% total global ethane emissions in 2014These findings highlight the importance of shale production in global atmospheric ethane shiftThese emissions impact air quality and influence interpretations of recent global methane changes
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.otherethane
dc.subject.otherfugitive emissions
dc.subject.otherair quality
dc.subject.otherBakken
dc.subject.othershale
dc.titleFugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142509/1/grl54333.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142509/2/grl54333-sup-0001-2016GL068703-SI.pdf
dc.identifier.doi10.1002/2016GL068703
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferencePetron, G., et al. ( 2014 ), A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver‐Julesburg Basin, J. Geophys. Res. Atmos., 119, 6836 – 6852, doi: 10.1002/2013JD021272.
dc.identifier.citedreferenceGoldstein, A. H., S. C. Wofsy, and C. M. Spivakovsky ( 1995 ), Seasonal variations of nonmethane hydrocarbons in rural New England: Constraints on OH concentrations in northern midlatitudes, J. Geophys. Res., 100, 21,023 – 21,033, doi: 10.1029/95JD02034.
dc.identifier.citedreferenceHighwood, E. J., K. P. Shine, M. D. Hurley, and T. J. Wallington ( 1999 ), Estimation of direct radiative forcing due to non‐methane hydrocarbons, Atmos. Environ., 33, 759 – 767.
dc.identifier.citedreferenceHudman, R. C., N. E. Moore, A. K. Mebust, R. V. Martin, A. R. Russell, L. C. Valin, and R. C. Cohen ( 2012 ), Steps towards a mechanistic model of global soil nitric oxide emissions: Implementation and space based‐constraints, Atmos. Chem. Phys., 12, 7779 – 7795.
dc.identifier.citedreferenceKarion, A., et al. ( 2013 ), Methane emissions estimate from airborne measurements over a western United States natural gas field, Geophys. Res. Lett., 40, 4393 – 4397, doi: 10.1002/grl.50811.
dc.identifier.citedreferenceKarion, A., et al. ( 2015 ), Aircraft‐based estimate of total methane emissions from the Barnett shale region, Environ. Sci. Technol., 49, 8124 – 8131.
dc.identifier.citedreferenceKeller, C. A., M. S. Long, R. M. Yantosca, A. M. Da Silva, S. Pawson, and D. J. Jacob ( 2014 ), HEMCO v1.0: A versatile, ESMF‐compliant component for calculating emissions in atmospheric models, Geosci. Model Dev., 7, 1409 – 1417.
dc.identifier.citedreferenceKort, E. A., C. Frankenberg, K. R. Costigan, R. Lindenmaier, M. K. Dubey, and D. Wunch ( 2014 ), Four corners: The largest US methane anomaly viewed from space, Geophys. Res. Lett., 41, 6898 – 6903, doi: 10.1002/2014GL061503.
dc.identifier.citedreferenceLegendre, P., and L. Legendre ( 1998 ), Numerical Ecology (Developments in Environmental Modeling), 2nd ed., Elsevier, Amsterdam.
dc.identifier.citedreferenceMao, J., F. Paulot, D. J. Jacob, R. C. Cohen, J. D. Crounse, P. O. Wennberg, C. A. Keller, R. C. Hudman, M. P. Barkley, and L. W. Horowitz ( 2013 ), Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry, J. Geophys. Res. Atmos., 118, 11,256 – 11,268, doi: 10.1002/jgrd.50817.
dc.identifier.citedreferenceMurray, L. T., D. J. Jacob, J. A. Logan, R. C. Hudman, and W. J. Koshak ( 2012 ), Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data, J. Geophys. Res., 117, D20307, doi: 10.1029/2012JD017934.
dc.identifier.citedreferenceNorth Dakota Drilling and Production Statistics ( 2015 ), Historical monthly gas production and sales statistics & historical monthly Bakken oil production statistics. [Available at https://www.dmr.nd.gov/oilgas/stats/statisticsvw.asp, accessed 9/16/15].
dc.identifier.citedreferencePeischl, J., et al. ( 2013 ), Quantifying sources of methane using light alkanes in the Los Angeles basin, California, J. Geophys. Res. Atmos., 118, 4974 – 4990, doi: 10.1002/jgrd.50413.
dc.identifier.citedreferencePeischl, J., et al. ( 2015 ), Quantifying atmospheric methane emissions from the Haynesville, Fayettville, and northeastern Marcellus shale gas production regions, J. Geophys. Res. Atmos., 120, 2119 – 2139, doi: 10.1002/2014JD022697.
dc.identifier.citedreferenceRudolph, J. ( 1995 ), The tropospheric distribution and budget of ethane, J. Geophys. Res., 100, 11,369 – 11,381, doi: 10.1029/95JD00693.
dc.identifier.citedreferenceSchultz, M., et al. ( 2007 ), Emission data sets and methodologies for estimating emissions, RETRO Proj. Rep. D1‐6, Hamburg, 26 Feb. [Avialable at http://retro.enes.org/reports/D1‐6_final.pdf.]
dc.identifier.citedreferenceSchwarz, J. P., J. S. Holloway, J. M. Katich, S. McKeen, E. A. Kort, M. L. Smith, T. B. Ryerson, C. Sweeneyand, and J. Peischl ( 2015 ), Black carbon emissions from the bakken oil and gas development region, Environ. Sci. Technol. Lett., 2 ( 10 ), 281 – 285.
dc.identifier.citedreferenceSimpson, I. J., M. P. Sulbaek Andersen, S. Meinardi, L. Bruhwiler, N. J. Blake, D. Helmig, F. Sherwood Rowland, and D. R. Blake ( 2012 ), Long‐term decline of global atmospheric ethane concentrations and implications for methane, Nature, 488, 490 – 494.
dc.identifier.citedreferenceSmith, M. L., E. A. Kort, A. Karion, C. Sweeney, S. C. Herndonand, and T. I. Yacovitch ( 2015 ), Airborne ethane observations in the Barnett shale: Quantification of ethane flux and attribution of methane emissions, Environ. Sci. Technol., 49, 8158 – 8166.
dc.identifier.citedreferenceSpeight, J. G. ( 2013 ), Shale Gas Properties and Processing, 170 pp., Gulf Prof., Waltham, Mass.
dc.identifier.citedreferenceU.S. Energy Information Administration ( 2016 ), Monthly dry shale gas production. [Available at http://www.eia.gov/naturalgas/weekly/, retrieved March 9, 2016.]
dc.identifier.citedreferencevan Donkelaar, A., et al. ( 2008 ), Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX‐B) to quantify long‐range transport of East Asian sulfur to Canada, Atmos. Chem. Phys., 8, 2999 – 3014.
dc.identifier.citedreferenceVinciguerra, T., S. Yao, J. Dadzie, A. Chittams, T. Deskins, S. Ehrman, and R. R. Dickerson ( 2015 ), Regional air quality impacts of hydraulic fracturing and shale natural gas activity: Evidence from ambient VOC observations, Atmos. Environ., 110, 144 – 150.
dc.identifier.citedreferenceWennberg, P. O., et al. ( 2012 ), On the sources of methane to the Los Angeles atmosphere, Environ. Sci. Technol., 46, 9282 – 9289.
dc.identifier.citedreferenceWild, O., X. Zhu, and M. J. Prather ( 2000 ), Fast‐J: Accurate simulation of in‐ and below‐cloud photolysis in tropospheric chemical models, J. Atmos. Chem., 37, 245 – 282.
dc.identifier.citedreferenceXiao, Y., J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake ( 2008 ), Global budget of ethane and regional constraints on U.S. sources, J. Geophys. Res., 113, D21306, doi: 10.1029/2007JD009415.
dc.identifier.citedreferenceYacovitch, T. I., et al. ( 2014 ), Demonstration of an ethane spectrometer for methane source identification, Environ. Sci. Technol., 48, 8028 – 8034.
dc.identifier.citedreferenceZhang, L., D. J. Jacob, X. Yue, N. V. Downey, D. A. Wood, and D. Blewitt ( 2014 ), Sources contributing to background surface ozone in the US Intermountain West, Atmos. Chem. Phys., 14, 5295 – 5309.
dc.identifier.citedreferenceAhmadov, R., et al. ( 2015 ), Understanding high wintertime ozone pollution events in an oil‐ and natural gas‐producing region of the western US, Atmos. Chem. Phys., 15, 411 – 429.
dc.identifier.citedreferenceAikin, A. C., J. R. Herman, E. J. Maier, and C. J. McQuillan ( 1982 ), Atmospheric chemistry of ethane and ethylene, J. Geophys. Res., 87, 3105 – 3118, doi: 10.1029/JC087iC04p03105.
dc.identifier.citedreferenceBarkley, M. P., et al. ( 2011 ), Can a “state of the art” chemistry transport model simulate Amazonian tropospheric chemistry?, J. Geophys. Res., 116, D16302, doi: 10.1029/2011JD015893.
dc.identifier.citedreferenceBlake, D. R., and F. S. Rowland ( 1986 ), Global atmospheric concentrations and source strengths of ethane, Nature, 321, 231 – 233.
dc.identifier.citedreferenceBrandt, A. R., et al. ( 2014 ), Methane leaks from North American natural gas systems, Science, 343, 733 – 735.
dc.identifier.citedreferenceBrandt, A. R., T. Yeskoo, S. McNally, K. Vafi, H. Cai, and M. Q. Wang ( 2015 ), Energy intensity and greenhouse gas emissions from crude oil production in the Bakken formation: Input data and analysis methods, Energy Syst. Div., Argonne Natl. Lab. [Available at https://greet.es.anl.gov/publication‐bakken‐oil.]
dc.identifier.citedreferenceCaulton, D. R., et al. ( 2014 ), Toward a better understanding and quantification of methane emissions from shale gas development, Proc. Natl. Acad. Sci. U. S. A., 111, 6237 – 6242.
dc.identifier.citedreferenceCollins, W. J., R. G. Derwent, C. E. Johnson, and D. S. Stevenson ( 2002 ), The oxidation of organic compounds in the troposphere and their global warming potentials, Clim. Change, 52, 453 – 479.
dc.identifier.citedreferenceConder, M. W., and K. A. Lawlor ( 2014 ), Production characteristics of liquids‐rich resource plays challenge facility design. [Available at http://www.aogr.com/magazine/editors‐choice/production‐characteristics‐of‐liquids‐rich‐resource‐plays‐challenge‐facilit, retrieved August 17, 2015.]
dc.identifier.citedreferenceConley, S. A., I. C. Faloona, D. H. Lenschow, A. Karion, and C. Sweeney ( 2014 ), A low‐cost system for measuring horizontal winds from single‐engine aircraft, J. Atmos. Oceanic Technol., 31, 1312 – 1320.
dc.identifier.citedreferenceDlugokencky, E. J., R. C. Myers, P. M. Lang, K. A. Masarie, A. M. Crotwell, K. W. Thoning, B. D. Hall, J. W. Elkins, and L. P. Steele ( 2005 ), Conversion of NOAA atmospheric dry air CH 4 mole fractions to a gravimetrically prepared standard scale, J. Geophys. Res., 110, D18306, doi: 10.1029/2005JD006035.
dc.identifier.citedreferenceDraxler, R. R., and G. D. Rolph ( 2015 ), HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model, NOAA Air Resour. Lab., College Park, Md. [Available at http://www.arl.noaa.gov/HYSPLIT.php, access via NOAA ARL READY.]
dc.identifier.citedreferenceEdwards, P. M., et al. ( 2015 ), High winter ozone pollution from carbonyl photolysis in an oil and gas basin, Nature, 514, 351 – 354.
dc.identifier.citedreferenceEtiope, G., and P. Ciccioli ( 2009 ), Earth’s degassing: A missing ethane and propane source, Science, 323, 478.
dc.identifier.citedreferenceEuropean Commission, Joint Research Centre JRC, and Netherlands Environmental Assessment Agency PBL ( 2011 ), Emission Database for Global Atmospheric Research (EDGAR), release version 4.2. [Available at http://edgar.jrc.ec.europa.eu.]
dc.identifier.citedreferenceFiore, A. M., J. T. Oberman, M. Y. Lin, L. Zhang, O. E. Clifton, D. J. Jacob, V. Naik, L. W. Horowitz, J. P. Pinto, and G. P. Milly ( 2014 ), Estimating North American background ozone in U.S. surface air with two independent global models: Variability, uncertainties, and recommendations, Atmos. Environ., 96, 284 – 300.
dc.identifier.citedreferenceFranco, B., et al. ( 2015 ), Retrieval of ethane from ground‐based FTIR solar spectra using improved spectroscopy: Recent burden increase above Jungfraujoch, J. Quant. Spectros. Radiat. Transfer, 160, 36 – 49.
dc.identifier.citedreferenceGhandi, A., S. Yeh, A. R. Brandt, K. Vafi, H. Cai, M. Q. Wang, B. R. Scanlon, and R. C. Reedy ( 2015 ), Energy intensity and greenhouse gas emissions from crude oil production in the Eagle Ford Region: Input data and analysis methods, UC Davis Inst. of Transp. Stud., Prepared for Argonne Natl. Lab., Sept.
dc.identifier.citedreferenceGiglio, L., J. T. Randerson, and G. R. van der Werf ( 2013 ), Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4), J. Geophys. Res. Biogeosci., 118, 317 – 328, doi: 10.1002/jgrg.20042.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.