Show simple item record

Prospective mixture risk assessment and management prioritizations for river catchments with diverse land uses

dc.contributor.authorPosthuma, Leo
dc.contributor.authorBrown, Colin D.
dc.contributor.authorde Zwart, Dick
dc.contributor.authorDiamond, Jerome
dc.contributor.authorDyer, Scott D.
dc.contributor.authorHolmes, Christopher M.
dc.contributor.authorMarshall, Stuart
dc.contributor.authorBurton, G. Allen
dc.date.accessioned2018-03-07T18:25:24Z
dc.date.available2019-05-13T14:45:24Zen
dc.date.issued2018-03
dc.identifier.citationPosthuma, Leo; Brown, Colin D.; de Zwart, Dick; Diamond, Jerome; Dyer, Scott D.; Holmes, Christopher M.; Marshall, Stuart; Burton, G. Allen (2018). "Prospective mixture risk assessment and management prioritizations for river catchments with diverse land uses." Environmental Toxicology and Chemistry 37(3): 715-728.
dc.identifier.issn0730-7268
dc.identifier.issn1552-8618
dc.identifier.urihttps://hdl.handle.net/2027.42/142512
dc.description.abstractEcological risk assessment increasingly focuses on risks from chemical mixtures and multiple stressors because ecosystems are commonly exposed to a plethora of contaminants and nonchemical stressors. To simplify the task of assessing potential mixture effects, we explored 3 land use–related chemical emission scenarios. We applied a tiered methodology to judge the implications of the emissions of chemicals from agricultural practices, domestic discharges, and urban runoff in a quantitative model. The results showed land use–dependent mixture exposures, clearly discriminating downstream effects of land uses, with unique chemical “signatures” regarding composition, concentration, and temporal patterns. Associated risks were characterized in relation to the land‐use scenarios. Comparisons to measured environmental concentrations and predicted impacts showed relatively good similarity. The results suggest that the land uses imply exceedances of regulatory protective environmental quality standards, varying over time in relation to rain events and associated flow and dilution variation. Higher‐tier analyses using ecotoxicological effect criteria confirmed that species assemblages may be affected by exposures exceeding no‐effect levels and that mixture exposure could be associated with predicted species loss under certain situations. The model outcomes can inform various types of prioritization to support risk management, including a ranking across land uses as a whole, a ranking on characteristics of exposure times and frequencies, and various rankings of the relative role of individual chemicals. Though all results are based on in silico assessments, the prospective land use–based approach applied in the present study yields useful insights for simplifying and assessing potential ecological risks of chemical mixtures and can therefore be useful for catchment‐management decisions. Environ Toxicol Chem 2018;37:715–728. © 2017 The Authors. Environmental Toxicology Chemistry Published by Wiley Periodicals, Inc.
dc.publisherCambridge
dc.publisherWiley Periodicals, Inc.
dc.subject.otherEcological risk assessment
dc.subject.otherWatershed management
dc.subject.otherCatchment assessment
dc.subject.otherAquatic risk assessment
dc.subject.otherChemical mixture
dc.subject.otherExposure scenario
dc.titleProspective mixture risk assessment and management prioritizations for river catchments with diverse land uses
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142512/1/etc3960.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142512/2/etc3960_am.pdf
dc.identifier.doi10.1002/etc.3960
dc.identifier.sourceEnvironmental Toxicology and Chemistry
dc.identifier.citedreferenceMunthe J, Brorström‐Lundén E, Rahmberg M, Posthuma L, Altenburger R, Brack W, Bunke B, Engelen G, Gawlik BM, Van Gils J, López Herráez D, Rydberg T, Slobodnik J, Van Wezel A. 2017. An expanded conceptual framework for solution‐focused management of chemical pollution in European waters. Environ Sci Eur 29: 1 – 16.
dc.identifier.citedreferenceGinebreda A, Kuzmanovic M, Guasch H, de Alda ML, López‐Doval JC, Muñoz I, Ricart M, Romaní AM, Sabater S, Barceló D. 2013. Assessment of multi‐chemical pollution in aquatic ecosystems using toxic units: Compound prioritization, mixture characterization and relationships with biological descriptors. Sci Total Environ 468–469: 715 – 723.
dc.identifier.citedreferenceGötz CW, Stamm C, Fenner K, Singer H, Schärer M, Hollender J. 2010. Targeting aquatic microcontaminants for monitoring: Exposure categorization and application to the Swiss situation. Environ Sci Pollut R 17: 341 – 354.
dc.identifier.citedreferenceGuillén D, Ginebreda A, Farré M, Darbra RM, Petrovic M, Gros M, Barceló D. 2012. Prioritization of chemicals in the aquatic environment based on risk assessment: Analytical, modeling and regulatory perspective. Sci Total Environ 440: 236 – 252.
dc.identifier.citedreferenceGustavsson MB, Magnér J, Carney Almroth B, Eriksson MK, Sturve J, Backhaus T. 2017. Chemical monitoring of Swedish coastal waters indicates common exceedances of environmental thresholds, both for individual substances as well as their mixtures. Mar Pollut Bull 122: 409 – 419.
dc.identifier.citedreferenceHarbers JV, Huijbregts MAJ, Posthuma L, Van de Meent D. 2006. Estimating the impact of high‐production‐volume chemicals on remote ecosystems by toxic pressure calculation. Environ Sci Technol 40: 1573 – 1580.
dc.identifier.citedreferenceHenning‐de Jong I, Ragas AMJ, Hendriks HWM, Huijbregts MAJ, Posthuma L, Wintersen A, Jan Hendriks A. 2009. The impact of an additional ecotoxicity test on ecological quality standards. Ecotox Environ Safe 72: 2037 – 2045.
dc.identifier.citedreferenceHolmes CM, Brown CD, Hamer M, Jones R, Maltby L, Posthuma L, Silberhorn E, Teeter JS, Warne MSJ, Weltje L. 2018. Prospective aquatic risk assessment for chemical mixtures in agricultural landscapes. Environ Toxicol Chem 37: 674 – 689 ( this issue ).
dc.identifier.citedreferenceHolt MS, Fox K, Grießbach E, Johnsen S, Kinnunen J, Lecloux A, Murray‐Smith R, Peterson DR, Schröder R, Silvani M, ten Berge WFJ, Toy RJ, Feijtel TCM. 2000. Monitoring, modelling and environmental exposure assessment of industrial chemicals in the aquatic environment. Chemosphere 41: 1799 – 1808.
dc.identifier.citedreferenceHyman SE. 2010. The diagnosis of mental disorders: The problem of reification. Annu Rev Clin Psychol 6: 155 – 179.
dc.identifier.citedreferenceJohnson AC, Donnachie RL, Sumpter JP, Jürgens MD, Moeckel C, Gloria Pereira M. 2017. An alternative approach to risk rank chemicals on the threat they pose to the aquatic environment. Sci Total Environ 599–600: 1372 – 1381.
dc.identifier.citedreferenceKolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT. 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ Sci Technol 36: 1202 – 1211.
dc.identifier.citedreferenceKönig M, Escher BI, Neale PA, Krauss M, Hilscherová K, Novák J, Teodorović I, Schulze T, Seidensticker S, Kamal Hashmi MA, Ahlheim J, Brack W. 2017. Impact of untreated wastewater on a major European river evaluated with a combination of in vitro bioassays and chemical analysis. Environ Pollut 220: 1220 – 1230.
dc.identifier.citedreferenceKortenkamp A, Backhaus T, Faust M. 2009. State of the art report on mixture toxicity. European Commission, Directorate General for the Environment. Luxembourg.
dc.identifier.citedreferenceLópez‐Serna R, Petrović M, Barceló D. 2012. Occurrence and distribution of multi‐class pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain). Sci Total Environ 440: 280 – 289.
dc.identifier.citedreferenceMalaj E, von der Ohe PC, Grote M, Kühne R, Mondy CP, Usseglio‐Polatera P, Brack W, Schäfer RB. 2014. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc Natl Acad Sci USA 111: 9549 – 9554.
dc.identifier.citedreferenceMunz NA, Burdon FJ, de Zwart D, Junghans M, Melo L, Reyes M, Schönenberger U, Singer HP, Spycher B, Hollender J, Stamm C. 2017. Pesticides drive risk of micropollutants in wastewater‐impacted streams during low flow conditions. Water Res 110: 366 – 377.
dc.identifier.citedreferenceNational Research Council. 2009. Science and Decisions: Advancing Risk Assessment. National Academies Press, Washington, DC, USA.
dc.identifier.citedreferencePosthuma L, de Zwart D. 2012. Predicted mixture toxic pressure relates to observed fraction of benthic macrofauna species impacted by contaminant mixtures. Environ Toxicol Chem 31: 2175 – 2188.
dc.identifier.citedreferencePosthuma L, Dyer SD, de Zwart D, Kapo K, Holmes CM, Burton GA Jr. 2016. Eco‐epidemiology of aquatic ecosystems: Separating chemicals from multiple stressors. Sci Total Environ 573: 1303 – 1319.
dc.identifier.citedreferencePrato S, La Valle P, De Luca E, Lattanzi L, Migliore G, Morgana JG, Munari C, Nicoletti L, Izzo G, Mistri M. 2014. The “one‐out, all‐out” principle entails the risk of imposing unnecessary restoration costs: A study case in two Mediterranean coastal lakes. Mar Pollut Bull 80: 30 – 40.
dc.identifier.citedreferenceSchäfer RB, Kühn B, Malaj E, König A, Gergs R. 2016. Contribution of organic toxicants to multiple stress in river ecosystems. Freshwater Biol 61: 2116 – 2128.
dc.identifier.citedreferenceSobek A, Bejgarn S, Ruden C, Breiholtz M. 2016. The dilemma in prioritizing chemicals for environmental analysis: Known versus unknown hazards. Environmental Science: Processes & Impacts 18: 1042 – 1049.
dc.identifier.citedreferenceStephan CE, Mount DI, Hansen DJ, Gentile JH, Chapman GA, Brungs WA. 1985. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. PB 85‐227049. US Environmental Protection Agency, Duluth MN.
dc.identifier.citedreferenceUS Environmental Protection Agency. 2009. The national study of chemical residues in lake fish tissue. Washington, DC.
dc.identifier.citedreferenceVallotton N, Price PS. 2016. Use of the maximum cumulative ratio as an approach for prioritizing aquatic coexposure to plant protection products: A case study of a large surface water monitoring database. Environ Sci Technol 50: 5286 – 5293.
dc.identifier.citedreferenceVan Straalen NM, Denneman CAJ. 1989. Ecotoxicological evaluation of soil quality criteria. Ecotox Environ Safe 18: 241 – 251.
dc.identifier.citedreferenceVan Wezel A, Ter Laak T, Fischer A, Bauerlein P, Munthe J, Posthuma L. 2017. Mitigation options for chemicals of emerging concern in surface waters: Operationalising solutions‐focused risk assessment. Environmental Science: Water Research & Technology. DOI: 10.1039C7EW00077D.
dc.identifier.citedreferenceZijp MC, Posthuma L, Van de Meent D. 2014. Definition and applications of a versatile chemical pollution footprint methodology. Environ Sci Technol 48: 10588 – 10597.
dc.identifier.citedreferenceBackhaus T, Karlsson M. 2014. Screening level mixture risk assessment of pharmaceuticals in STP effluents. Water Res 49: 157 – 165.
dc.identifier.citedreferenceBarclay JR, Tripp H, Bellucci CJ, Warner G, Helton AM. 2016. Do waterbody classifications predict water quality ? J Environ Manage 183: 1 – 12.
dc.identifier.citedreferenceBjørn A, Diamond M, Birkved M, Hauschild MZ. 2014. Chemical footprint method for improved communication of freshwater ecotoxicity impacts in the context of ecological limits. Environ Sci Technol 48: 13253 – 13262.
dc.identifier.citedreferenceBrack W, Dulio V, Ågerstrand M, Allan I, Altenburger R, Brinkmann M, Bunke D, Burgess RM, Cousins I, Escher BI, Hernández FJ, Hewitt LM, Hilscherová K, Hollender J, Hollert H, Kase R, Klauer B, Lindim C, Herráez DL, Miège C, Munthe J, O’Toole S, Posthuma L, Rüdel H, Schäfer RB, Sengl M, Smedes F, van de Meent D, van den Brink PJ, van Gils J, van Wezel AP, Vethaak AD, Vermeirssen E, von der Ohe PC, Vrana B. 2017. Towards the review of the European Union Water Framework management of chemical contamination in European surface water resources. Sci Total Environ 576: 720 – 737.
dc.identifier.citedreferenceBradbury JA. 1989. The policy implications of differing concepts of risk. Science, Technology, & Human Values 14: 380 – 399.
dc.identifier.citedreferenceBradley PM, Journey CA, Romanok KM, Barber LB, Buxton HT, Foreman WT, Furlong ET, Glassmeyer ST, Hladik ML, Iwanowicz LR, Jones DK, Kolpin DW, Kuivila KM, Loftin KA, Mills MA, Meyer MT, Orlando JL, Reilly TJ, Smalling KL, Villeneuve DL. 2017. Expanded target‐chemical analysis reveals extensive mixed‐organic‐contaminant exposure in U.S. streams. Environ Sci Technol 51: 4792 – 4802.
dc.identifier.citedreferenceConley JM, Evans N, Cardon MC, Rosenblum L, Iwanowicz LR, Hartig PC, Schenck KM, Bradley PM, Wilson VS. 2017. Occurrence and in vitro bioactivity of estrogen, androgen, and glucocorticoid compounds in a nationwide screen of United States stream waters. Environ Sci Technol 51: 4781 – 4791.
dc.identifier.citedreferenceCoppens LJC, van Gils JAG, ter Laak TL, Raterman BW, van Wezel AP. 2015. Towards spatially smart abatement of human pharmaceuticals in surface waters: Defining impact of sewage treatment plants on susceptible functions. Water Res 81: 356 – 365.
dc.identifier.citedreferencede Zwart D. 2005. Ecological effects of pesticide use in The Netherlands: Modeled and observed effects in the field ditch. Integr Environ Assess Manag 1: 123 – 134.
dc.identifier.citedreferencede Zwart D, Adams W, Galay Burgos M, Hollender J, Junghans M, Merrington G, Muir D, Parkerton T, De Schamphelaere KAC, Whale G, Williams R. 2018. Aquatic exposures of chemical mixtures in urban environments: Approaches to impact assessment. Environ Toxicol Chem 37: 703 – 714 ( this issue ).
dc.identifier.citedreferencede Zwart D, Posthuma L. 2005. Complex mixture toxicity for single and multiple species: Proposed methodologies. Environ Toxicol Chem 24: 2665 – 2676.
dc.identifier.citedreferenceDiamond J, Altenburger R, Coors A, Dyer SD, Focazio M, Koelmans AA, Leung KMY, Servos MR, Snape J, Tolls J, Zhang X. 2018. Use of prospective and retrospective risk assessment methods that simplify chemical mixtures associated with treated domestic wastewater discharges. Environ Toxicol Chem 37: 690 – 702 ( this issue ). DOI: 10.1002/etc.4013.
dc.identifier.citedreferenceEuropean Commission. 2013. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official J Eur Union L226: 1 – 17.
dc.identifier.citedreferenceEuropean Commission. 2014. Living well, within the limits of our planet. General Union Environment Action Programme to 2020. Luxembourg.
dc.identifier.citedreferenceGeiser K. 2015. Chemicals Without Harm. Policies for a Sustainable World. MIT, Cambridge, MA, USA.
dc.identifier.citedreferenceGessner MO, Tlili A. 2016. Fostering integration of freshwater ecology with ecotoxicology. Freshwater Biol 61: 1991 – 2001.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.