Show simple item record

Spacecraft surface charging induced by severe environments at geosynchronous orbit

dc.contributor.authorMatéo‐vélez, J.‐c.
dc.contributor.authorSicard, A.
dc.contributor.authorPayan, D.
dc.contributor.authorGanushkina, N.
dc.contributor.authorMeredith, N. P.
dc.contributor.authorSillanpäa, I.
dc.date.accessioned2018-03-07T18:25:37Z
dc.date.available2019-03-01T21:00:18Zen
dc.date.issued2018-01
dc.identifier.citationMatéo‐vélez, J.‐c. ; Sicard, A.; Payan, D.; Ganushkina, N.; Meredith, N. P.; Sillanpäa, I. (2018). "Spacecraft surface charging induced by severe environments at geosynchronous orbit." Space Weather 16(1): 89-106.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/142525
dc.description.abstractSevere and extreme surface charging on geosynchronous spacecraft is examined through the analysis of 16 years of data from particles detectors onâ board the Los Alamos National Laboratory spacecraft. Analysis shows that high spacecraft frame potentials are correlated with 10 to 50 keV electron fluxes, especially when these fluxes exceed 1 à  108 cmâ 2 sâ 1 srâ 1. Four criteria have been used to select severe environments: 1) large flux of electrons with energies above 10 keV, 2) large fluxes of electrons with energies below 50 keV and above 200 keV, 3) large flux of electrons with energies below 50 keV and low flux with energies above 200 keV, and 4) long periods of time with a spacecraft potential below â 5 kV. They occur preferentially during either geomagnetic storms or intense isolated substorms, during the declining phase of the solar cycle, during equinox seasons and close to midnight local time. The set of anomalies reported in Choi et al. (2011) is concomitant with a new database constructed from these events. The worstâ case environments exceed the spacecraft design guidelines by up to a factor of 10 for energies below 10 keV. They are fitted with triple Maxwellian distributions in order to facilitate their use by spacecraft designers as alternative conditions for the assessment of worstâ case surface charging.Key PointsA new set of severe space environments is compared to satellite surface charging mitigation guidelines at geosynchronous orbitNew severe environment electron spectra exceed the guidelines by up to a factor of 10 below 10 keVSatellites anomalies previously reported are concomitant with the injection of high fluxes of electrons between 10 and 50 keV
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherspacecraft charging
dc.subject.othergeosynchronous orbit
dc.subject.otherworstâ case environment
dc.subject.otherplasma
dc.subject.otherLANL sensors
dc.titleSpacecraft surface charging induced by severe environments at geosynchronous orbit
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142525/1/swe20546.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142525/2/swe20546_am.pdf
dc.identifier.doi10.1002/2017SW001689
dc.identifier.sourceSpace Weather
dc.identifier.citedreferencePayan, D., Séverin, F., Catani, J.â P., Roussel, J.â F., Reulet, R., & Sarrail, D. ( 2001 ). Electrostatic discharges on solar arrays. Physical model of inverted potential gradient electrostatic discharge. Proceedings of the Spacecraft Charging Technology Conference, Noordwijk, Netherlands. Retrieved from http://adsabs.harvard.edu/full/2001ESASP.476..151P
dc.identifier.citedreferenceMullen, E.G., Gussenhoven M. S., & Garrett H. B. ( 1981 ). A â Worst Case’ Spacecraft Charging Environment as Observed by SCATHA on 24 April 1979. AFGLâ TRâ 81â 0231.
dc.identifier.citedreferenceMullen, E. G., Gussenhoven, M. S., & Hardy, D. A. ( 1986 ). SCATHA Survey of Highâ Level Spacecraft Charging in Sunlight. Journal of Geophysical Research, 91 ( A2 ), 1474 â 1149.
dc.identifier.citedreferenceMullen, E. G., Hardy, D. A., Garrett, H. B., & Whipple, E. C. ( 1981 ). P78â 2 SCATHA Environmental Data Atlas, Spacecraft Charging Technology. 1980. NASA CPâ 2182/AFGLâ TRâ 81â 0270.
dc.identifier.citedreferenceMuranaka, T., Hosoda, S., Kim, J., Hatta, S., Ikeda, K., Hamanaga, T., â ¦ Goka, T. ( 2008 ). Development of multiâ utility spacecraft charging tool (MUSCAT). IEEE Transactions on Plasma Science, 36 ( N5 ), 2336 â 2349.
dc.identifier.citedreferenceNASA ( 2011 ). NASAâ HDBKâ 4002A, Mitigating Inâ Space Charging Effectsâ A Guideline.
dc.identifier.citedreferenceNovikov, L. S., Mileev, V. N., Krupnikov, K. K., Makletsov, A. A., Marjin, B. V., Rjazantseva, M. O., â ¦ Vlasova, N. A. ( 2008 ). Simultaneous investigation of magnetospheric plasma and spacecraft charging. Advances in Space Research, 42, 1307 â 1312.
dc.identifier.citedreferenceO’Brien, T. P., Fennell, J. F., Roeder, J. L., & Reeves, G. D. ( 2007 ). Extreme electron fluxes in the outer zone. Space Weather, 5, S01001. https://doi.org/10.1029/2006SW000240
dc.identifier.citedreferenceOda, M., Nakamura, M., & Cho, M. ( 2016 ). Analysis of denseâ electronâ induced spacecraft charging in geosynchronous orbit. In Proceedings of the 14th Spacecraft Charging and Technology Conference, Noordwijk, NL. Retrieved from http://old.esaconferencebureau.com/2016-events/14sctc/proceedings
dc.identifier.citedreferencePurvis, C. K. ( 1983 ). The role of potential barrier formation in spacecraft charging, NASAâ TMâ 83500.
dc.identifier.citedreferencePurvis, C. K., Garrett, H. B., Whittlesey, A. C., & Stevens, N. J. ( 1984 ). Design Guidelines for Assessing and Controlling Spacecraft Charging Effects (NASA Technical Paper 2361).
dc.identifier.citedreferenceRaeder, J., Wang, Y. L., Fullerâ Rowell, T. J., & Singer, H. J. ( 2001 ). Global simulation of magnetospheric space weather effects of the Bastille day storm. Solar Physics, 204, 323. https://doi.org/10.1023/A:1014228230714
dc.identifier.citedreferenceRodgers, D., Hilgers, A., Cipriani, F., Mateoâ Velez, J.â C., Payan, D., Wulf, H., â ¦ Zugaj, H. ( 2016 ). Critical review of spacecraft charging standards, Proc. 14th Spacecraft Charging and Technology Conference, Noordwijk, NL. Retrieved from http://old.esaconferencebureau.com/2016-events/14sctc/proceedings
dc.identifier.citedreferenceRoussel, J.â F., Dufour, G., Mateoâ Velez, J.â C., Thiébault, B., Andersson, B., Rodgers, D., â ¦ Payan, D. ( 2012 ). SPIS multi time scale and multi physics capabilities: development and application to GEO charging and flashover modeling. IEEE Transactions on Plasma Science, 40, 183 â 191. https://doi.org/10.1109/TPS.2011.2177672
dc.identifier.citedreferenceRussell, C. T., & McPherron, R. L. ( 1973 ). Semiannual variation of geomagnetic activity. Journal of Geophysical Research, 78 ( 1 ), 92 â 108.
dc.identifier.citedreferenceRyden, K. A., & Hands, A. D. P. ( 2017 ). Modeling of Electric Fields Inside Spacecraft Dielectrics Using Inâ Orbit Charging Current Data. IEEE Transactions on Plasma Science, 99. https://doi.org/10.1109/TPS.2017.2665622
dc.identifier.citedreferenceSarnoâ Smith, L. K., Larsen, B. A., Skoug, R. M., Liemohn, M. W., Breneman, A., Wygant, J. R., & Thomsen, M. F. ( 2016 ). Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes. Space Weather, 14, 151 â 164. https://doi.org/10.1002/2015SW001345
dc.identifier.citedreferenceSicardâ Piet, A., Bourdarie, S., Boscher, D., Friedel, H. W., Thomsen, M., Goka, T., â ¦ Koshiishi, H. ( 2008 ). A new international geostationary electron model: IGEâ 2006, from 1 keV to 5.2 MeV. Space Weather, 6, S07003. https://doi.org/10.1029/2007SW000368
dc.identifier.citedreferenceThiebault, B., Jeantyâ Ruard, B., Souquet, P., Forest, J., Mateo Velez, J.â C., Sarrailh, P., â ¦ Balcon, N. ( 2016 ). SPIS 5.1, an innovative approach for spacecraft plasma modeling. IEEE Transactions on Plasma Science, 43, 2782 â 2788. https://doi.org/10.1109.TPS.2015.2425300
dc.identifier.citedreferenceThomsen, M., Noveroske, E., Borovsky, J. E., & McComas, D. J. ( 1999 ). Calculation of Moments from Measurements by the Los Alamos Magnetosphere Plasma Analyzer (Los Alamos National Lab. Rept. LAâ 13566â MS). Los Alamos, NM.
dc.identifier.citedreferenceThomsen, M. F., Henderson, M. G., & Jordanova, V. K. ( 2013 ). Statistical properties of the surfaceâ charging environment at geosynchronous orbit. Space Weather, 11, 237 â 244. https://doi.org/10.1002/swe.20049
dc.identifier.citedreferenceVette, J. I. ( 1991 ). The AEâ 8 trapped electron model environment, NASAâ TMâ 107820.
dc.identifier.citedreferenceWilkinson, D. C. ( 1994 ). National Oceanic and Atmospheric Administration’s spacecraft anomaly data base and examples of solar activity affecting spacecraft. Journal of Spacecraft and Rockets, 31, 160 â 165.
dc.identifier.citedreferenceWrenn, G. L. ( 1995 ). Conclusive evidence for internal dielectric charging anomalies on geosynchronous communications spacecraft. Journal of Spacecraft and Rockets, 32, 514 â 520.
dc.identifier.citedreferenceWrenn, G. L., Rodgers, D. J., & Ryden, K. A. ( 2002 ). A solar cycle of spacecraft anomalies due to internal charging. Annales de Geophysique, 20 ( 7 ), 953 â 956.
dc.identifier.citedreferenceBaker, D. N. ( 2000 ). The occurrence of operational anomalies in spacecraft and their relationship to space weather. IEEE Transactions on Plasma Science, 28, 2007 â 2016.
dc.identifier.citedreferenceBame, S. J., McComas, D. J., Thomsen, M. F., Barraclough, B. L., Elphic, R. C., Glore, J. P., â ¦ Wymer, F. J. ( 1993 ). Magnetospheric plasma analyzer for spacecraft with constrained resources. Review of Scientific Instruments, 64, 1026.
dc.identifier.citedreferenceBelian, R. D., Gisler, G. R., Cayton, T., & Christensen, R. ( 1992 ). Highâ Z energetic particles at geosynchronous orbit during the great solar proton event series of October 1989. Journal of Geophysical Research, 97, 16,897 â 16,906.
dc.identifier.citedreferenceBortnik, J., Thorne, R. M., & Meredith, N. P. ( 2007 ). Modeling the propagation characteristics of chorus using CRRES suprathermal electron fluxes. Journal of Geophysical Research, 112, A08204. https://doi.org/10.1029/2006JA012237
dc.identifier.citedreferenceCho, M. ( 2005 ). Failure mechanisms and protection methods of spacecraft power systems, International Symposium on Electrical Insulating Materials, Kitakyushu, Japan, 2005. https://doi.org/10.1109/ISEIM.2005.193320
dc.identifier.citedreferenceCho, M., & Hastings, D. E. ( 1993 ). Computer particle simulation of high voltage solar array arcing onset. Journal of Spacecraft and Rockets, 30 ( 2 ), 189 â 201.
dc.identifier.citedreferenceCho, M., & Nozaki, Y. ( 2005 ). Number of Arcs Estimated on Solar Array of a Geostationary Satellite. Journal of Spacecraft and Rockets, 42 ( 4 ), 740 â 748.
dc.identifier.citedreferenceChoi, H.â S., Lee, J., Cho, K.â S., Kwak, Y.â S., Cho, I.â H., Park, Y.â D., â ¦ Lee, D.â K. ( 2011 ). Analysis of GEO spacecraft anomalies: Space weather relationships. Space Weather, 9, S06001. https://doi.org/10.1029/2010SW000597
dc.identifier.citedreferenceChoi, H.â S., Lee, J., Cho, K.â S., Kwak, Y.â S., Cho, I.â H., Park, Y.â D., â ¦ Lee, D.â K. ( 2012 ). Reply to comment by Joseph E. Mazur and T. Paul O’Brien on â Analysis of GEO spacecraft anomalies: Space weather relationshipsâ . Space Weather, 10, S03004. https://doi.org/10.1029/2012SW000765
dc.identifier.citedreferenceDavis, V. A., Mandell, M. J., & Thomsen, M. ( 2008 ). Representation of the Measured Geosynchronous Plasma Environment in Spacecraft Charging Calculations. Journal of Geophysical Research, 113, A10204. https://doi.org/10.1029/2008JA013116
dc.identifier.citedreferenceDeForest, S. E. ( 1972 ). Spacecraft charging at synchronous orbit. Journal of Geophysical Research, 77 ( 4 ), 651 â 659.
dc.identifier.citedreferenceDeForest, S. E. ( 1973 ). Electrostatic potentials developed by ATSâ 5. In R. J. L.   Grard (Ed.), Photon and Particle Interactions with Surfaces in Space (pp. 263 â 267 ). Netherlands: Springer.
dc.identifier.citedreferenceDeutsch, M.â J. C. ( 1982 ). Worst Case Earth Charging Environment. Journal of Spacecraft, 19 ( 5 ), 82 â 4223.
dc.identifier.citedreferenceECSS ( 2008 ). ECSSâ Eâ STâ 10â 04C, Space environment. Retrieved from http://ecss.nl/standard/ecss-e-st-10-04c-space-environment/
dc.identifier.citedreferenceFerguson, D. C. ( 2016 ). Oops! We have a problem! Spacecraft charging related anomalies from DSCSâ II to GPS, Dale C. Ferguson, 14th Spacecraft Charging Technology Conference, ESA/ESTEC, Noordwijk, NL, 04â 08 April 2016. Retrieved from http://old.esaconferencebureau.com/2016-events/14sctc/proceedings
dc.identifier.citedreferenceFerguson, D. C., Hilmer, R. V., & Davis, V. A. ( 2015 ). The best GEO daytime spacecraft charging index. Journal of Spacecraft and Rockets, 52 ( 2 ), 526 â 543. https://doi.org/10.2514/1.A32959
dc.identifier.citedreferenceFerguson, D. C., & Katz, I. ( 2014 ). The Worstâ Case GEO Environment and the Frequency of Arcs in GEO, in Proceedings of Spacecraft Charging Technologies Conference, Pasadena, CA 2014. https://doi.org/10.1109/TPS.2015.2432718
dc.identifier.citedreferenceGarrett, H. B. ( 1981 ). The charging of spacecraft surfaces. Reviews of Geophysics, 19 ( 4 ), 577 â 616. https://doi.org/10.1029/RG019i004p00577
dc.identifier.citedreferenceGarrett, H. B., & de Forest, S. E. ( 1979 ). An analytical simulation of the geosynchronous plasma environment. Planetary and Space Science, 27, 1101 â 1109.
dc.identifier.citedreferenceGussenhoven, M. S., & Mullen, E. G. ( 1983 ). Geosynchronous environment for severe spacecraft charging. Journal of Spacecraft and Rockets, 20 ( 1 ), 26.
dc.identifier.citedreferenceIucci, N., Levitin, A. E., Belov, A. V., Eroshenko, E. A., Ptitsyna, N. G., Villoresi, G., â ¦ Yanke, V. G. ( 2005 ). Space weather conditions and spacecraft anomalies in different orbits. Space Weather, 3, S01001. https://doi.org/10.1029/2003SW000056
dc.identifier.citedreferenceKoons, H. C., Mazur, J. E., Selesnick, R. S., Blake, J. B., Fennell, J. F., Roeder, J. L., & Anderson, P. C. ( 2000 ). The impact of the space environment on space systems. In Proceedings of the 6th Spacecraft Charging Technology Conference (p. 7 ). MA: Air Force Research Laboratory, Hanscom AFB. Retrieved from http://www.dtic.mil/docs/citations/ADA376872
dc.identifier.citedreferenceLai, S. T. ( 2012 ). Fundamentals of Spacecraft Charging: Spacecraft Interactions With Space Plasmas. NJ: Princeton University Press.
dc.identifier.citedreferenceLazaro, D., & Sicardâ Piet, A. ( 2011 ). Détermination historique pire cas d’environnement, ONERA RF 1/18484 DESP.
dc.identifier.citedreferenceLeach, R. D. ( 1995 ). Failures and anomalies attributed to spacecraft charging, NASA (Tech. Rep. NASAâ RPâ 1375).
dc.identifier.citedreferenceMaejima, H., Kawakita, S., Kusuwake, H., Takahashi, M., Goka, T., Kurosaki, T., â ¦ Cho, M. ( 2004 ). Investigation of Power System Failure of a LEO Satellite Investigation of Power System Failure of a LEO Satellite, 2nd International Energy Conversion Engineering Conference, Providence, RI, AIAA 2004â 5657. Retrieved from https://doi.org/10.2514/6.2004%E2%80%935657
dc.identifier.citedreferenceMandell, M. J., Davis, V. A., Cooke, D. L., Wheelock, A., & Roth, C. J. ( 2006 ). Nascapâ 2 k Spacecraft Charging Code Overview. IEEE Transactions on Plasma Science, 34 ( 5 ), 2084 â 2093.
dc.identifier.citedreferenceMatéoâ Vélez, J.â C., Ganuschkina, N., Meredith, N., Sicardâ Piet, A., Maget, V., Payan, D., â ¦ Dubyagin, S. ( 2016 ). From GEO/LEO environment data to the numerical estimation of spacecraft surface charging at MEO, 14th Spacecraft Charging and Technology Conference, Noordwijk, NL. Retrived from http://old.esaconferencebureau.com/2016-events/14sctc/proceedings
dc.identifier.citedreferenceMatéoâ Vélez, J.â C., Sicardâ Piet, A., Lazaro, D., Inguimbert, V., Sarrailh, P., Hess, S., â ¦ Payan, D. ( 2016 ). Severe Geostationary Environments: Numerical Estimation of Spacecraft Surface Charging from Flight Data. Journal of Spacecraft and Rockets, 53 ( 2 ), 304 â 316. https://doi.org/10.2514/1.A33376
dc.identifier.citedreferenceMazur, J. E., & O’Brien, T. P. ( 2012 ). Comment on â Analysis of GEO spacecraft anomalies: Space weather relationshipsâ by Hoâ Sung Choi et al. Space Weather, 10, S03003. https://doi.org/10.1029/2011SW000738
dc.identifier.citedreferenceMeier, M., Belian, R. D., Cayton, T. E., Christensen, R. A., Garcia, B., Grace, K. M., â ¦ Reeves, G. D. ( 1996 ). The energy spectrometer for particles (ESP): Instrument description and orbital performance, in Proceedings of the Taos Workshop on the Earth’s Trapped Particle Environment. In G. D.   Reeves (Ed.), AIP Conference Proceedings (Vol. 383, pp. 203 â 210 ).
dc.identifier.citedreferenceMeredith, N. P., Horne, R. B., Isles, J. D., & Green, J. C. ( 2016 ). Extreme Energetic Electron Fluxes in Low Earth Orbit: Analysis of POES E > 30, E > 100 and E > 300 keV Electrons. Space Weather, 14, 136 â 150. https://doi.org/10.1002/2015SW001348
dc.identifier.citedreferenceMeredith, N. P., Horne, R. B., Thorne, R. M., Summers, D., & Anderson, R. R. ( 2004 ). Substorm dependence of plasmaspheric hiss. Journal of Geophysical Research, 109, A06209. https://doi.org/10.1029/2004JA010387
dc.identifier.citedreferenceMinow, J. I., & Parker, L. N. ( 2014 ). Spacecraft Charging: Anomaly and Failure Mechanisms. Chantilly, VA: Spacecraft Anomalies and Failures Workshop. Retrieved from https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140012586.pdf
dc.identifier.citedreferenceMizera, P. P. ( 1981 ). Charging Results from the Satellite Surface Potential Monitor. Journal of Spacecraft and Rockets, 18 ( 6 ), 506 â 509. https://doi.org/10.2514/3.57848
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.