Spacecraft surface charging induced by severe environments at geosynchronous orbit
dc.contributor.author | Matéo‐vélez, J.‐c. | |
dc.contributor.author | Sicard, A. | |
dc.contributor.author | Payan, D. | |
dc.contributor.author | Ganushkina, N. | |
dc.contributor.author | Meredith, N. P. | |
dc.contributor.author | Sillanpäa, I. | |
dc.date.accessioned | 2018-03-07T18:25:37Z | |
dc.date.available | 2019-03-01T21:00:18Z | en |
dc.date.issued | 2018-01 | |
dc.identifier.citation | Matéo‐vélez, J.‐c. ; Sicard, A.; Payan, D.; Ganushkina, N.; Meredith, N. P.; Sillanpäa, I. (2018). "Spacecraft surface charging induced by severe environments at geosynchronous orbit." Space Weather 16(1): 89-106. | |
dc.identifier.issn | 1542-7390 | |
dc.identifier.issn | 1542-7390 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/142525 | |
dc.description.abstract | Severe and extreme surface charging on geosynchronous spacecraft is examined through the analysis of 16Â years of data from particles detectors onâ board the Los Alamos National Laboratory spacecraft. Analysis shows that high spacecraft frame potentials are correlated with 10 to 50Â keV electron fluxes, especially when these fluxes exceed 1Â Ã Â 108Â cmâ 2Â sâ 1Â srâ 1. Four criteria have been used to select severe environments: 1) large flux of electrons with energies above 10Â keV, 2) large fluxes of electrons with energies below 50Â keV and above 200Â keV, 3) large flux of electrons with energies below 50Â keV and low flux with energies above 200Â keV, and 4) long periods of time with a spacecraft potential below â 5Â kV. They occur preferentially during either geomagnetic storms or intense isolated substorms, during the declining phase of the solar cycle, during equinox seasons and close to midnight local time. The set of anomalies reported in Choi et al. (2011) is concomitant with a new database constructed from these events. The worstâ case environments exceed the spacecraft design guidelines by up to a factor of 10 for energies below 10Â keV. They are fitted with triple Maxwellian distributions in order to facilitate their use by spacecraft designers as alternative conditions for the assessment of worstâ case surface charging.Key PointsA new set of severe space environments is compared to satellite surface charging mitigation guidelines at geosynchronous orbitNew severe environment electron spectra exceed the guidelines by up to a factor of 10 below 10Â keVSatellites anomalies previously reported are concomitant with the injection of high fluxes of electrons between 10 and 50Â keV | |
dc.publisher | Springer | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | spacecraft charging | |
dc.subject.other | geosynchronous orbit | |
dc.subject.other | worstâ case environment | |
dc.subject.other | plasma | |
dc.subject.other | LANL sensors | |
dc.title | Spacecraft surface charging induced by severe environments at geosynchronous orbit | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Electrical Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/142525/1/swe20546.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/142525/2/swe20546_am.pdf | |
dc.identifier.doi | 10.1002/2017SW001689 | |
dc.identifier.source | Space Weather | |
dc.identifier.citedreference | Payan, D., Séverin, F., Catani, J.â P., Roussel, J.â F., Reulet, R., & Sarrail, D. ( 2001 ). Electrostatic discharges on solar arrays. Physical model of inverted potential gradient electrostatic discharge. Proceedings of the Spacecraft Charging Technology Conference, Noordwijk, Netherlands. Retrieved from http://adsabs.harvard.edu/full/2001ESASP.476..151P | |
dc.identifier.citedreference | Mullen, E.G., Gussenhoven M. S., & Garrett H. B. ( 1981 ). A â Worst Case’ Spacecraft Charging Environment as Observed by SCATHA on 24 April 1979. AFGLâ TRâ 81â 0231. | |
dc.identifier.citedreference | Mullen, E. G., Gussenhoven, M. S., & Hardy, D. A. ( 1986 ). SCATHA Survey of Highâ Level Spacecraft Charging in Sunlight. Journal of Geophysical Research, 91 ( A2 ), 1474 â 1149. | |
dc.identifier.citedreference | Mullen, E. G., Hardy, D. A., Garrett, H. B., & Whipple, E. C. ( 1981 ). P78â 2 SCATHA Environmental Data Atlas, Spacecraft Charging Technology. 1980. NASA CPâ 2182/AFGLâ TRâ 81â 0270. | |
dc.identifier.citedreference | Muranaka, T., Hosoda, S., Kim, J., Hatta, S., Ikeda, K., Hamanaga, T., â ¦ Goka, T. ( 2008 ). Development of multiâ utility spacecraft charging tool (MUSCAT). IEEE Transactions on Plasma Science, 36 ( N5 ), 2336 â 2349. | |
dc.identifier.citedreference | NASA ( 2011 ). NASAâ HDBKâ 4002A, Mitigating Inâ Space Charging Effectsâ A Guideline. | |
dc.identifier.citedreference | Novikov, L. S., Mileev, V. N., Krupnikov, K. K., Makletsov, A. A., Marjin, B. V., Rjazantseva, M. O., â ¦ Vlasova, N. A. ( 2008 ). Simultaneous investigation of magnetospheric plasma and spacecraft charging. Advances in Space Research, 42, 1307 â 1312. | |
dc.identifier.citedreference | O’Brien, T. P., Fennell, J. F., Roeder, J. L., & Reeves, G. D. ( 2007 ). Extreme electron fluxes in the outer zone. Space Weather, 5, S01001. https://doi.org/10.1029/2006SW000240 | |
dc.identifier.citedreference | Oda, M., Nakamura, M., & Cho, M. ( 2016 ). Analysis of denseâ electronâ induced spacecraft charging in geosynchronous orbit. In Proceedings of the 14th Spacecraft Charging and Technology Conference, Noordwijk, NL. Retrieved from http://old.esaconferencebureau.com/2016-events/14sctc/proceedings | |
dc.identifier.citedreference | Purvis, C. K. ( 1983 ). The role of potential barrier formation in spacecraft charging, NASAâ TMâ 83500. | |
dc.identifier.citedreference | Purvis, C. K., Garrett, H. B., Whittlesey, A. C., & Stevens, N. J. ( 1984 ). Design Guidelines for Assessing and Controlling Spacecraft Charging Effects (NASA Technical Paper 2361). | |
dc.identifier.citedreference | Raeder, J., Wang, Y. L., Fullerâ Rowell, T. J., & Singer, H. J. ( 2001 ). Global simulation of magnetospheric space weather effects of the Bastille day storm. Solar Physics, 204, 323. https://doi.org/10.1023/A:1014228230714 | |
dc.identifier.citedreference | Rodgers, D., Hilgers, A., Cipriani, F., Mateoâ Velez, J.â C., Payan, D., Wulf, H., â ¦ Zugaj, H. ( 2016 ). Critical review of spacecraft charging standards, Proc. 14th Spacecraft Charging and Technology Conference, Noordwijk, NL. Retrieved from http://old.esaconferencebureau.com/2016-events/14sctc/proceedings | |
dc.identifier.citedreference | Roussel, J.â F., Dufour, G., Mateoâ Velez, J.â C., Thiébault, B., Andersson, B., Rodgers, D., â ¦ Payan, D. ( 2012 ). SPIS multi time scale and multi physics capabilities: development and application to GEO charging and flashover modeling. IEEE Transactions on Plasma Science, 40, 183 â 191. https://doi.org/10.1109/TPS.2011.2177672 | |
dc.identifier.citedreference | Russell, C. T., & McPherron, R. L. ( 1973 ). Semiannual variation of geomagnetic activity. Journal of Geophysical Research, 78 ( 1 ), 92 â 108. | |
dc.identifier.citedreference | Ryden, K. A., & Hands, A. D. P. ( 2017 ). Modeling of Electric Fields Inside Spacecraft Dielectrics Using Inâ Orbit Charging Current Data. IEEE Transactions on Plasma Science, 99. https://doi.org/10.1109/TPS.2017.2665622 | |
dc.identifier.citedreference | Sarnoâ Smith, L. K., Larsen, B. A., Skoug, R. M., Liemohn, M. W., Breneman, A., Wygant, J. R., & Thomsen, M. F. ( 2016 ). Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes. Space Weather, 14, 151 â 164. https://doi.org/10.1002/2015SW001345 | |
dc.identifier.citedreference | Sicardâ Piet, A., Bourdarie, S., Boscher, D., Friedel, H. W., Thomsen, M., Goka, T., â ¦ Koshiishi, H. ( 2008 ). A new international geostationary electron model: IGEâ 2006, from 1Â keV to 5.2Â MeV. Space Weather, 6, S07003. https://doi.org/10.1029/2007SW000368 | |
dc.identifier.citedreference | Thiebault, B., Jeantyâ Ruard, B., Souquet, P., Forest, J., Mateo Velez, J.â C., Sarrailh, P., â ¦ Balcon, N. ( 2016 ). SPIS 5.1, an innovative approach for spacecraft plasma modeling. IEEE Transactions on Plasma Science, 43, 2782 â 2788. https://doi.org/10.1109.TPS.2015.2425300 | |
dc.identifier.citedreference | Thomsen, M., Noveroske, E., Borovsky, J. E., & McComas, D. J. ( 1999 ). Calculation of Moments from Measurements by the Los Alamos Magnetosphere Plasma Analyzer (Los Alamos National Lab. Rept. LAâ 13566â MS). Los Alamos, NM. | |
dc.identifier.citedreference | Thomsen, M. F., Henderson, M. G., & Jordanova, V. K. ( 2013 ). Statistical properties of the surfaceâ charging environment at geosynchronous orbit. Space Weather, 11, 237 â 244. https://doi.org/10.1002/swe.20049 | |
dc.identifier.citedreference | Vette, J. I. ( 1991 ). The AEâ 8 trapped electron model environment, NASAâ TMâ 107820. | |
dc.identifier.citedreference | Wilkinson, D. C. ( 1994 ). National Oceanic and Atmospheric Administration’s spacecraft anomaly data base and examples of solar activity affecting spacecraft. Journal of Spacecraft and Rockets, 31, 160 â 165. | |
dc.identifier.citedreference | Wrenn, G. L. ( 1995 ). Conclusive evidence for internal dielectric charging anomalies on geosynchronous communications spacecraft. Journal of Spacecraft and Rockets, 32, 514 â 520. | |
dc.identifier.citedreference | Wrenn, G. L., Rodgers, D. J., & Ryden, K. A. ( 2002 ). A solar cycle of spacecraft anomalies due to internal charging. Annales de Geophysique, 20 ( 7 ), 953 â 956. | |
dc.identifier.citedreference | Baker, D. N. ( 2000 ). The occurrence of operational anomalies in spacecraft and their relationship to space weather. IEEE Transactions on Plasma Science, 28, 2007 â 2016. | |
dc.identifier.citedreference | Bame, S. J., McComas, D. J., Thomsen, M. F., Barraclough, B. L., Elphic, R. C., Glore, J. P., â ¦ Wymer, F. J. ( 1993 ). Magnetospheric plasma analyzer for spacecraft with constrained resources. Review of Scientific Instruments, 64, 1026. | |
dc.identifier.citedreference | Belian, R. D., Gisler, G. R., Cayton, T., & Christensen, R. ( 1992 ). Highâ Z energetic particles at geosynchronous orbit during the great solar proton event series of October 1989. Journal of Geophysical Research, 97, 16,897 â 16,906. | |
dc.identifier.citedreference | Bortnik, J., Thorne, R. M., & Meredith, N. P. ( 2007 ). Modeling the propagation characteristics of chorus using CRRES suprathermal electron fluxes. Journal of Geophysical Research, 112, A08204. https://doi.org/10.1029/2006JA012237 | |
dc.identifier.citedreference | Cho, M. ( 2005 ). Failure mechanisms and protection methods of spacecraft power systems, International Symposium on Electrical Insulating Materials, Kitakyushu, Japan, 2005. https://doi.org/10.1109/ISEIM.2005.193320 | |
dc.identifier.citedreference | Cho, M., & Hastings, D. E. ( 1993 ). Computer particle simulation of high voltage solar array arcing onset. Journal of Spacecraft and Rockets, 30 ( 2 ), 189 â 201. | |
dc.identifier.citedreference | Cho, M., & Nozaki, Y. ( 2005 ). Number of Arcs Estimated on Solar Array of a Geostationary Satellite. Journal of Spacecraft and Rockets, 42 ( 4 ), 740 â 748. | |
dc.identifier.citedreference | Choi, H.â S., Lee, J., Cho, K.â S., Kwak, Y.â S., Cho, I.â H., Park, Y.â D., â ¦ Lee, D.â K. ( 2011 ). Analysis of GEO spacecraft anomalies: Space weather relationships. Space Weather, 9, S06001. https://doi.org/10.1029/2010SW000597 | |
dc.identifier.citedreference | Choi, H.â S., Lee, J., Cho, K.â S., Kwak, Y.â S., Cho, I.â H., Park, Y.â D., â ¦ Lee, D.â K. ( 2012 ). Reply to comment by Joseph E. Mazur and T. Paul O’Brien on â Analysis of GEO spacecraft anomalies: Space weather relationshipsâ . Space Weather, 10, S03004. https://doi.org/10.1029/2012SW000765 | |
dc.identifier.citedreference | Davis, V. A., Mandell, M. J., & Thomsen, M. ( 2008 ). Representation of the Measured Geosynchronous Plasma Environment in Spacecraft Charging Calculations. Journal of Geophysical Research, 113, A10204. https://doi.org/10.1029/2008JA013116 | |
dc.identifier.citedreference | DeForest, S. E. ( 1972 ). Spacecraft charging at synchronous orbit. Journal of Geophysical Research, 77 ( 4 ), 651 â 659. | |
dc.identifier.citedreference | DeForest, S. E. ( 1973 ). Electrostatic potentials developed by ATSâ 5. In R. J. L. Â Grard (Ed.), Photon and Particle Interactions with Surfaces in Space (pp. 263 â 267 ). Netherlands: Springer. | |
dc.identifier.citedreference | Deutsch, M.â J. C. ( 1982 ). Worst Case Earth Charging Environment. Journal of Spacecraft, 19 ( 5 ), 82 â 4223. | |
dc.identifier.citedreference | ECSS ( 2008 ). ECSSâ Eâ STâ 10â 04C, Space environment. Retrieved from http://ecss.nl/standard/ecss-e-st-10-04c-space-environment/ | |
dc.identifier.citedreference | Ferguson, D. C. ( 2016 ). Oops! We have a problem! Spacecraft charging related anomalies from DSCSâ II to GPS, Dale C. Ferguson, 14th Spacecraft Charging Technology Conference, ESA/ESTEC, Noordwijk, NL, 04â 08 April 2016. Retrieved from http://old.esaconferencebureau.com/2016-events/14sctc/proceedings | |
dc.identifier.citedreference | Ferguson, D. C., Hilmer, R. V., & Davis, V. A. ( 2015 ). The best GEO daytime spacecraft charging index. Journal of Spacecraft and Rockets, 52 ( 2 ), 526 â 543. https://doi.org/10.2514/1.A32959 | |
dc.identifier.citedreference | Ferguson, D. C., & Katz, I. ( 2014 ). The Worstâ Case GEO Environment and the Frequency of Arcs in GEO, in Proceedings of Spacecraft Charging Technologies Conference, Pasadena, CA 2014. https://doi.org/10.1109/TPS.2015.2432718 | |
dc.identifier.citedreference | Garrett, H. B. ( 1981 ). The charging of spacecraft surfaces. Reviews of Geophysics, 19 ( 4 ), 577 â 616. https://doi.org/10.1029/RG019i004p00577 | |
dc.identifier.citedreference | Garrett, H. B., & de Forest, S. E. ( 1979 ). An analytical simulation of the geosynchronous plasma environment. Planetary and Space Science, 27, 1101 â 1109. | |
dc.identifier.citedreference | Gussenhoven, M. S., & Mullen, E. G. ( 1983 ). Geosynchronous environment for severe spacecraft charging. Journal of Spacecraft and Rockets, 20 ( 1 ), 26. | |
dc.identifier.citedreference | Iucci, N., Levitin, A. E., Belov, A. V., Eroshenko, E. A., Ptitsyna, N. G., Villoresi, G., â ¦ Yanke, V. G. ( 2005 ). Space weather conditions and spacecraft anomalies in different orbits. Space Weather, 3, S01001. https://doi.org/10.1029/2003SW000056 | |
dc.identifier.citedreference | Koons, H. C., Mazur, J. E., Selesnick, R. S., Blake, J. B., Fennell, J. F., Roeder, J. L., & Anderson, P. C. ( 2000 ). The impact of the space environment on space systems. In Proceedings of the 6th Spacecraft Charging Technology Conference (p. 7 ). MA: Air Force Research Laboratory, Hanscom AFB. Retrieved from http://www.dtic.mil/docs/citations/ADA376872 | |
dc.identifier.citedreference | Lai, S. T. ( 2012 ). Fundamentals of Spacecraft Charging: Spacecraft Interactions With Space Plasmas. NJ: Princeton University Press. | |
dc.identifier.citedreference | Lazaro, D., & Sicardâ Piet, A. ( 2011 ). Détermination historique pire cas d’environnement, ONERA RF 1/18484 DESP. | |
dc.identifier.citedreference | Leach, R. D. ( 1995 ). Failures and anomalies attributed to spacecraft charging, NASA (Tech. Rep. NASAâ RPâ 1375). | |
dc.identifier.citedreference | Maejima, H., Kawakita, S., Kusuwake, H., Takahashi, M., Goka, T., Kurosaki, T., â ¦ Cho, M. ( 2004 ). Investigation of Power System Failure of a LEO Satellite Investigation of Power System Failure of a LEO Satellite, 2nd International Energy Conversion Engineering Conference, Providence, RI, AIAA 2004â 5657. Retrieved from https://doi.org/10.2514/6.2004%E2%80%935657 | |
dc.identifier.citedreference | Mandell, M. J., Davis, V. A., Cooke, D. L., Wheelock, A., & Roth, C. J. ( 2006 ). Nascapâ 2Â k Spacecraft Charging Code Overview. IEEE Transactions on Plasma Science, 34 ( 5 ), 2084 â 2093. | |
dc.identifier.citedreference | Matéoâ Vélez, J.â C., Ganuschkina, N., Meredith, N., Sicardâ Piet, A., Maget, V., Payan, D., â ¦ Dubyagin, S. ( 2016 ). From GEO/LEO environment data to the numerical estimation of spacecraft surface charging at MEO, 14th Spacecraft Charging and Technology Conference, Noordwijk, NL. Retrived from http://old.esaconferencebureau.com/2016-events/14sctc/proceedings | |
dc.identifier.citedreference | Matéoâ Vélez, J.â C., Sicardâ Piet, A., Lazaro, D., Inguimbert, V., Sarrailh, P., Hess, S., â ¦ Payan, D. ( 2016 ). Severe Geostationary Environments: Numerical Estimation of Spacecraft Surface Charging from Flight Data. Journal of Spacecraft and Rockets, 53 ( 2 ), 304 â 316. https://doi.org/10.2514/1.A33376 | |
dc.identifier.citedreference | Mazur, J. E., & O’Brien, T. P. ( 2012 ). Comment on â Analysis of GEO spacecraft anomalies: Space weather relationshipsâ by Hoâ Sung Choi et al. Space Weather, 10, S03003. https://doi.org/10.1029/2011SW000738 | |
dc.identifier.citedreference | Meier, M., Belian, R. D., Cayton, T. E., Christensen, R. A., Garcia, B., Grace, K. M., â ¦ Reeves, G. D. ( 1996 ). The energy spectrometer for particles (ESP): Instrument description and orbital performance, in Proceedings of the Taos Workshop on the Earth’s Trapped Particle Environment. In G. D. Â Reeves (Ed.), AIP Conference Proceedings (Vol. 383, pp. 203 â 210 ). | |
dc.identifier.citedreference | Meredith, N. P., Horne, R. B., Isles, J. D., & Green, J. C. ( 2016 ). Extreme Energetic Electron Fluxes in Low Earth Orbit: Analysis of POES EÂ >Â 30, EÂ >Â 100 and EÂ >Â 300Â keV Electrons. Space Weather, 14, 136 â 150. https://doi.org/10.1002/2015SW001348 | |
dc.identifier.citedreference | Meredith, N. P., Horne, R. B., Thorne, R. M., Summers, D., & Anderson, R. R. ( 2004 ). Substorm dependence of plasmaspheric hiss. Journal of Geophysical Research, 109, A06209. https://doi.org/10.1029/2004JA010387 | |
dc.identifier.citedreference | Minow, J. I., & Parker, L. N. ( 2014 ). Spacecraft Charging: Anomaly and Failure Mechanisms. Chantilly, VA: Spacecraft Anomalies and Failures Workshop. Retrieved from https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140012586.pdf | |
dc.identifier.citedreference | Mizera, P. P. ( 1981 ). Charging Results from the Satellite Surface Potential Monitor. Journal of Spacecraft and Rockets, 18 ( 6 ), 506 â 509. https://doi.org/10.2514/3.57848 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.