Controlled Release Characteristics of Aqueous PEO‐PPO‐PEO Micelles With Added Malachite Green, Erythrosin, and Cisplatin Determined by UV–Visible Spectroscopy
dc.contributor.author | Thompson, Andre L. | |
dc.contributor.author | Ball, Ashley N. | |
dc.contributor.author | Love, Brian J. | |
dc.date.accessioned | 2018-03-07T18:25:42Z | |
dc.date.available | 2019-03-01T21:00:18Z | en |
dc.date.issued | 2018-01 | |
dc.identifier.citation | Thompson, Andre L.; Ball, Ashley N.; Love, Brian J. (2018). "Controlled Release Characteristics of Aqueous PEO‐PPO‐PEO Micelles With Added Malachite Green, Erythrosin, and Cisplatin Determined by UV–Visible Spectroscopy." Journal of Surfactants and Detergents 21(1): 5-15. | |
dc.identifier.issn | 1097-3958 | |
dc.identifier.issn | 1558-9293 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/142528 | |
dc.description.abstract | Dynamic diffusion experiments were performed on aqueous polymeric micelles mixed with malachite green (0.05% mass v−1), erythrosin (0.1% mass v−1), and cisplatin (0.1% mass v−1) to gauge release from sequestered structures using ultraviolet–visible spectroscopy. The additives were formulated with 20% mass v−1 aqueous solutions of polyethylene oxide‐polypropylene oxide‐polyethylene oxide, PEO‐PPO‐PEO (F127). Each additive was tested neat at room temperature, neat at 40 °C, and formulated with F127 at room temperature, and 40 °C. After constructing calibration curves, the dynamic release for each ternary additive and corresponding diffusion coefficients were calculated. Results show that F127 retards permeation at room temperature. In general, the neat additives at 40 °C showed the highest permeability for both malachite green and erythrosin. Malachite green released almost 90% of the dye by 60 min of permeation. When formulated with F127 at 40 °C, sizeable release was still noted, but with an induction period of 10–30 min to register release. The behavior with cisplatin was more complicated as the first 5 h of permeation resulted in a burst delivery with cisplatin (6% total release with cisplatin‐F127‐RT compared to 4% total release cisplatin‐RT) but with overall lower release. The higher fluence at elevated temperature is attributed to reducing the blocking effect of the amphiphiles on the walls of the dialysis tubing as they are directed to form colloidal gels. There is also likely a correlation between higher temperature and higher overall permeability if the membrane pores also expand with temperature. | |
dc.publisher | John Wiley & Sons, Inc. | |
dc.subject.other | Surfactant | |
dc.subject.other | Malachite green chloride | |
dc.subject.other | Erythrosin B dye | |
dc.subject.other | Drug delivery | |
dc.subject.other | Diffusion | |
dc.subject.other | Cisplatin | |
dc.title | Controlled Release Characteristics of Aqueous PEO‐PPO‐PEO Micelles With Added Malachite Green, Erythrosin, and Cisplatin Determined by UV–Visible Spectroscopy | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Chemical Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/142528/1/jsde12001.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/142528/2/jsde12001_am.pdf | |
dc.identifier.doi | 10.1002/jsde.12001 | |
dc.identifier.source | Journal of Surfactants and Detergents | |
dc.identifier.citedreference | Ramachandran, S., Quist, A. P., Kumar, S., & Lal, R. ( 2006 ) Cisplatin nanoliposomes for cancer therapy: AFM and fluorescence imaging of cisplatin encapsulation, stability, cellular uptake, and toxicity. Langmuir, 22: 8156 – 8162. | |
dc.identifier.citedreference | Naskar, B., Ghosh, S., & Moulik, S. P. ( 2012 ) Solution behavior of normal and reverse triblock copolymers (Pluronic L44 and 10R5) individually and in binary mixture. Langmuir, 28: 7134 – 7146. | |
dc.identifier.citedreference | Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J. S., … Gao, J. ( 2006 ) Multifunctional polymeric micelles as cancer‐targeted, MRI‐ultrasensitive drug delivery systems. Nano Letters, 6: 2427 – 2430. | |
dc.identifier.citedreference | Nishiyama, N., Okazaki, S., Cabral, H., Miyamoto, M., Kato, Y., Yuichi, S., … Kataoka, K. ( 2003 ) Novel cisplatin‐incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Research, 63: 8977 – 8983. | |
dc.identifier.citedreference | Oishi, M., Hayashi, H., Iijima, M., & Nagasaki, Y. ( 2007 ) Endosomal release and intracellular delivery of anticancer drugs using pH‐sensitive PEGylated nanogels. Journal of Materials Chemistry, 17: 3720 – 3725. | |
dc.identifier.citedreference | Prameela, G. K. S., Kumar, B. V. N. P., Aswal, V. K., & Mandal, A. B. ( 2013 ) Influence of water‐insoluble nonionic copolymer E 6 P 39 E 6 on the microstructure and self‐aggregation dynamic of aqueous SDS solution ‐ NMR and SANS investigations. Physical Chemistry Chemical Physics, 15: 17577 – 17586. | |
dc.identifier.citedreference | Reardon, P. J. T., Parhizkar, M. Harker, A. H., Browning, R. J., Vassileva, V., Stride, E., … Knowles, J. C. ( 2017 ) Electrohydrodynamic fabrication of core‐shell PLGA nanoparticles with controlled release of cisplatin for enhanced cancer treatment. International Journal of Nanomedicine, 12: 3913 – 3926. | |
dc.identifier.citedreference | Reishus, J. W., Don, S., & Martin Jr., D. S. ( 1961 ) cis‐Dichlorodiammineplatinum(II). Acid hydrolysis and isotopic exchange of the chloride ligands. Acid hydrolysis of cis‐dichlorodiammineplatinum(II). Journal of the American Chemical Society, 83: 2457 – 2462. | |
dc.identifier.citedreference | Samad, A., Sultana, Y., & Aqil, M. ( 2007 ) Liposomal drug delivery systems: An update review. Current Drug Delivery, 4: 297 – 305. | |
dc.identifier.citedreference | Schmolka, I. R. ( 1972 ) Artificial skin I. Preparation and properties of pluronic F‐127 gels for treatment of burns. Journal of Biomedical Materials Research, 6: 571 – 582. | |
dc.identifier.citedreference | Scholes, P. D., Coombes, A. G. A., Davis, M. C., Illum, L., & Davis, S. S. ( 1997 ) Particle engineering of biodegradable colloids for site‐specific drug delivery. In K. Park (Ed.), Controlled drug delivery challenges and strategies (pp. 73 – 106 ). Washington, DC: American Chemical Society. | |
dc.identifier.citedreference | Siddik, Z. H. ( 2003 ) Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene, 22: 7265 – 7279. | |
dc.identifier.citedreference | Slowing, I. I., Trewyn, B. G., Giri, S., & Lin, V. S.‐Y. ( 2007 ) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Advanced Functional Materials, 17: 1225 – 1236. | |
dc.identifier.citedreference | Talingting, M. R., Munk, P., & Webber, S. E. ( 1999 ) Onion‐type micelles from polystyrene‐block‐poly(2‐vinylpyridine) and poly(2‐vinylpyridine)‐block‐poly(ethylene oxide). Macromolecules, 32: 1593 – 1601. | |
dc.identifier.citedreference | Team SE. ( 2017 ) Selective permeability of dialysis tubing lab: explained. Creative Commons 4.0. 2010–2017. Retrieved from https://schoolworkhelper.net | |
dc.identifier.citedreference | Thompson, A. L., & Love, B. J. ( 2013 ) Thermodynamic properties of aqueous PEO‐PPO‐PEO micelles with added methylparaben determined by differential scanning calorimetry. Journal of Colloid and Interface Science, 398: 270 – 272. https://doi.org/10.1016/j.jcis.2013.01.064 | |
dc.identifier.citedreference | Thompson, A. L., & Love, B. J. ( 2016 ) Thermodynamic properties of aqueous PEO‐PPO‐PEO micelles of varying hydrophilicity with added cisplatin determined by differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 127: 1583 – 1592. | |
dc.identifier.citedreference | Tuzar, Z., & Kratochvil, P. ( 1976 ) Block and graft copolymer micelles in solution. Advances in Colloid and Interface Science, 6: 201 – 232. | |
dc.identifier.citedreference | Verma, S. K., & Ghosh, K. K. ( 2011 ) Micellar and surface properties of some monomeric surfactants and a gemini cationic surfactant. Journal of Surfactants and Detergents, 14: 347 – 352. | |
dc.identifier.citedreference | Wang, D., & Lippard, S. J. ( 2005 ) Cellular processing of platinum anticancer drugs. Nature Reviews Drug Discovery, 4: 307 – 320. | |
dc.identifier.citedreference | Xu, P., Van Kirk, E. A., Murdoch, W. J., Zhan, Y. Isaak, D. D., Radosz, M., & Shen, Y. ( 2006 ) Anticancer efficacies of cisplatin‐releasing pH‐responsive nanoparticles. Biomacromolecules, 7: 829 – 835. | |
dc.identifier.citedreference | Yatvin, M. B., Weinstein, J. N., Dennis, W. H., & Blumenthal, R. ( 1978 ) Design of liposomes for enhanced local release of drugs by hyperthermia. American Association for the Advancement of Science, 202: 1290 – 1293. | |
dc.identifier.citedreference | Ajima, K., Murakami, T., Mizoguchi, Y., Tsuchida, K., Ichihashi, T., Iijima, S., & Yudasaka, M. ( 2008 ) Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single‐wall carbon nanohorns. ACS Nano, 2: 2057 – 2064. | |
dc.identifier.citedreference | Ajima, K., Yudasaka, M., Murakami, T., Maigne, A., Shiba, K., & Iijima, S. ( 2005 ) Carbon Nanohorns as anticancer drug carriers. Molecular Pharmaceutics, 2: 475 – 480. | |
dc.identifier.citedreference | Allen, T. M. ( 1998 ) Liposomal drug formulations: Rational for development and what we can expect for the future. Drugs, 56: 747 – 756. | |
dc.identifier.citedreference | Banerjea, D., Basolo, F., & Pearson, R. G. ( 1957 ) Mechanism of substitution reactions of complex ions. XII. Reactions of some platinum(II) complexes with various reactants. Journal of the American Chemical Society, 79: 4055 – 4062. | |
dc.identifier.citedreference | Barbe, C., Bartlett, J., Kong, L., Finnie, K., Lin, H. Q., Larkin, M., … Calleja, G. ( 2004 ) Silica particles: A novel drug‐delivery system. Advanced Materials, 16: 1959 – 1966. | |
dc.identifier.citedreference | Basotra, M., Singh, S. K., & Gulati, M. ( 2013 ) Development and validation of a simple and sensitive spectrometric method for estimation of cisplatin hydrochloride in tablet dosage forms: Application to dissolution studies. ISRN Analytical Chemistry, 2013: 1 – 8. | |
dc.identifier.citedreference | Cammas, S., & Kataoka, K. ( 1996 ) Site specific drug‐carriers: Polymeric micelles as high potential vehicles for biologically active molecules. In Solvents and self‐organizations of polymers NATO ASI Series E: Applied Sciences. Dordrecht, the Neherlands: Kluwer. | |
dc.identifier.citedreference | Campbell, C. S., Delgado‐Charro, M. B., Camus, O., & Perera, S. ( 2016 ) Comparison of drug release from PLGA microsperes and novel fibre formulations. Journal of Biomaterials Applications, 30: 1142 – 1153. | |
dc.identifier.citedreference | Cepeda, V., Fuertes, M. A., Castilla, J., Alonso, C., Quevedo, C., & Perez, J. M. ( 2007 ) Biochemical mechanisms of cisplatin cytotoxicity. Anti‐Cancer Agents in Medicinal Chemistry, 7: 3 – 18. | |
dc.identifier.citedreference | Cheng, K., Peng, S., Xu, C., & Sun, S. ( 2009 ) Porous hollow Fe 3 O 4 nanoparticles for target delivery and controlled release of cisplatin. Journal of the American Chemical Society, 131: 10637 – 10644. | |
dc.identifier.citedreference | Cubells, M. P., Aixela, J. P., Brumos, V. G., Pou, S. D., & Flaque, M. V. ( 1993 ) Stability of cisplatin in sodium chloride 0.9% intravenous solution related to the container’s material. Pharmacy World & Science, 15: 34 – 36. | |
dc.identifier.citedreference | Czarnobaj, K., & Lukasiak, J. ( 2007 ) In vitro release of cisplatin from sol‐gel processed organically modified silica xerogels. Journal of Materials Science: Materials in Medicine, 18: 2041 – 2044. | |
dc.identifier.citedreference | Fang, J.‐Y., Chen, J.‐P., Leu, Y.‐L., & J‐W, H. ( 2008 ) The delivery of platinum drugs from thermosensitive hydrogels containing different ratios of chitosan. Drug Delivery, 15: 235 – 243. | |
dc.identifier.citedreference | Geetha, B., & Mandal, A. B. ( 1995 ) Self‐diffusion studies on ω‐methoxy polyethylene glycol macromonomer micelles by using cyclic voltammetric and Fourier transform pulsed gradient spin‐echo nuclear magnetic resonance techniques. Langmuir, 11: 1464 – 1467. | |
dc.identifier.citedreference | Geetha, B., & Mandal, A. B. ( 1997 ) Determination of the critical micelle concentration of the methoxy polyethylene glycol based macromonomer and partition coefficient of a new electrochemical probe using a cyclic voltammetric technique. Langmuir, 13: 2410 – 2413. | |
dc.identifier.citedreference | Gillies, E. R., & Frechet, J. M. J. ( 2005 ) Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today, 10: 35 – 43. | |
dc.identifier.citedreference | Guven, A., Rusakova, I. A., Lewis, M. T., & Wilson, L. J. ( 2012 ) Cisplatin@US‐tube carbon nanoparticles for enchanced chemotherapeutic delivery. Biomaterials, 5: 1455 – 1461. | |
dc.identifier.citedreference | James, J., & Mandal, A. B. ( 2011 ) Micelle formation of Tyr‐Phe dipeptide and Val‐Tyr‐Val tripeptide in aqueous solution and their influence on the aggregation of SDS and PEO‐PPO‐PEO copolymer micelles. Colloids and Surfaces B: Biointerfaces, 84: 172 – 180. | |
dc.identifier.citedreference | James, J., Ramalechume, C., & Mandal, A. B. ( 2005 ) Self‐diffusion studies on PEO‐PPO‐PEO triblock copolymer micelles in SDS micelles and vice versa using cyclic voltammetry. Chemical Physics Letters, 405: 84 – 89. | |
dc.identifier.citedreference | James, J., Ramalechume, C., & Mandal, A. B. ( 2011 ) Two‐dimentional surface properties of PEO‐PPO‐PEO triblock copolymer film at the air/water interface in the absence and presence of Tyr‐Phe dipeptide, Val‐Tyr‐Val tripeptide, SDS and stearic acid. Colloids and Surfaces B: Biointerfaces, 82: 345 – 353. | |
dc.identifier.citedreference | Kataoka, K., Harada, A., & Nagasaki, Y. ( 2001 ) Block copolymer micelles for drug delivery: Design, characterization and biological significance. Advanced Drug Delivery Reviews, 47: 113 – 131. | |
dc.identifier.citedreference | Kreuter, J., Attwood, D., Bouwstra, J. A., Crommelin, D. J. A., Hofland, H. E., Junginer, H. E. & Schrier, H. ( 1994 ) Colloidal drug delivery systems. Drugs and the pharmaceutical sciences. New York, NY: Marcel Dekker, Inc. | |
dc.identifier.citedreference | Kwon, G. S., & Kataoka, K. ( 1995 ) Block copolymer micelles as long‐circulating drug vehicles. Advanced Drug Delivery Reviews, 16: 295 – 309. | |
dc.identifier.citedreference | Kwon, G. S., & Okano, T. ( 1996 ) Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews, 21: 107 – 116. | |
dc.identifier.citedreference | Lebwohl, D., & Canetta, R. ( 1998 ) Clinical development of platinum complexes in cancer therapy: An historical perspective and an update. European Journal of Cancer, 34: 1522 – 1534. | |
dc.identifier.citedreference | Lee, K. W., & Martin Jr., D. S. ( 1976 ) Cis‐dichlorodiammineplatinum(II). Aquation equilibria and isotopic exchange of chloride ligans with free chloride and tetrachloroplatinate(II)*. Inorganica Chimica Acta, 17: 105 – 110. | |
dc.identifier.citedreference | Maan, G. K., Bajpai, J., & Bajpai, A. K. ( 2016 ) Investigation of in vitro release of cisplatin from electrostatically crosslinked chitosan‐alginate nanoparticles. Synthesis and Reactivity in Inorganic, Metal‐Organic, and Nano‐Metal Chemistry, 46: 1532 – 1540. | |
dc.identifier.citedreference | Mandal, A., Sekar, S., Chandrasekaran, N., Mukherjee, A., & Sastry, T. ( 2013 ) Poly(ethylene) glycol‐capped silver and magnetic nanoparticles: Synthesis, characterization, and comparison of bactericidal and cytotoxic effects. Journal of Engineering in Medicine, 227: 1224 – 1236. | |
dc.identifier.citedreference | Mandal, A., Sekar, S., Kanagavel, M., Chandrasekaran, N., Mukherjee, A., & Sastry, T. P. ( 2013 ) Collagen based magnetic nanobiocomposite as MRI contrast agent and for targeted delivery in cancer therapy. Biochmica et Biophysica Acta, 1830: 4628 – 4633. | |
dc.identifier.citedreference | Mandal, A. B. ( 1987 ) Shape, size, hydration and flow behavior of nitrocellulose lacquer emulsion in absence and presence of urea. Journal of the American Oil Chemists’ Society, 64: 1202 – 1207. | |
dc.identifier.citedreference | Mandal, A. B. ( 1993 ) Self‐diffusion studies on various micelles using ferrocene as electrochemical probe. Langmuir, 9: 1932 – 1933. | |
dc.identifier.citedreference | Mandal, A. B., & Nair, B. U. ( 1991 ) Cyclic voltammetric technique for the determination of the critical micelle concentration of surfactants, self‐diffusion coefficient of micelles, and partition coefficient of an electrochemical probe. Journal of Physical Chemistry, 95: 9008 – 9013. | |
dc.identifier.citedreference | Mathiowitz, E., Jacob, J. S., Jong, Y. S., Carino, G. P., Chickering, D. E., Chatuvedi, P., … Morrell, C. ( 1997 ) Biologically erodable microspheres as potential oral drug delivery systems. Nature, 386: 410 – 414. | |
dc.identifier.citedreference | Matsumoto, A., Matsukawa, Y., Suzuki, T., Yoshino, H., & Kobayashi, M. ( 1997 ) The polymeralloys method as a new preparation method of biodegradable microspheres: Principle and application to cisplatin‐loaded microspheres. Journal of Controlled Release, 48: 19 – 27. | |
dc.identifier.citedreference | Meznarich, N. A. K., Juggernauth, K. A., Batzli, K. M., & Love, B. J. ( 2011 ) Structural changes in PEO–PPO–PEO gels induced by methylparaben and dexamethasone observed using time‐resolved SAXS. Macromolecules, 44: 7792 – 7798. https://doi.org/10.1021/ma2015358 | |
dc.identifier.citedreference | Meznarich, N. A. K., & Love, B. J. ( 2011 ) The kinetics of gel formation for PEO−PPO−PEO triblock copolymer solutions and the effects of added methylparaben. Macromolecules, 44: 3548 – 3555. https://doi.org/10.1021/ma200302s | |
dc.identifier.citedreference | Moffitt, M., Khougaz, K., & Eisenberg, A. ( 1996 ) Micellization of ionic block copolymers. Accounts of Chemical Research, 29: 95 – 102. | |
dc.identifier.citedreference | Mohanty, R. K., Thennarasu, S., & Mandal, A. B. ( 2014 ) Resveratrol stabilized gold nanoparticles enable surface loading of doxorubicin and anticancer activity. Colloids and Surfaces B: Biointerfaces, 114: 138 – 143. | |
dc.identifier.citedreference | Munk, P., Prochazka, K., Tuzar, Z., & Webber, S. E. ( 1998 ) Exploiting polymer micelle technology. ChemTech, 28: 20 – 28. | |
dc.identifier.citedreference | Murakami, T., Ajima, K., Miyawaki, J., Yudasaka, M., Iijima, S., & Shiba, K. ( 2004 ) Drug‐loaded carbon nanohorns: Adsorption and release of dexamethasone in vitro. Molecular Pharmaceutics, 1: 399 – 405. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.