Show simple item record

Influence of the Interplanetary Convective Electric Field on the Distribution of Heavy Pickup Ions Around Mars

dc.contributor.authorJohnson, B. C.
dc.contributor.authorLiemohn, M. W.
dc.contributor.authorFránz, M.
dc.contributor.authorRamstad, R.
dc.contributor.authorStenberg Wieser, G.
dc.contributor.authorNilsson, H.
dc.date.accessioned2018-03-07T18:26:06Z
dc.date.available2019-03-01T21:00:18Zen
dc.date.issued2018-01
dc.identifier.citationJohnson, B. C.; Liemohn, M. W.; Fránz, M. ; Ramstad, R.; Stenberg Wieser, G.; Nilsson, H. (2018). "Influence of the Interplanetary Convective Electric Field on the Distribution of Heavy Pickup Ions Around Mars." Journal of Geophysical Research: Space Physics 123(1): 473-484.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/142551
dc.description.abstractThis study obtains a statistical representation of 2–15 keV heavy ions outside of the Martian‐induced magnetosphere and depicts their organization by the solar wind convective electric field (ESW). The overlap in the lifetime of Mars Global Surveyor (MGS) and Mars Express (MEX) provides a period of nearly three years during which magnetometer data from MGS can be used to estimate the direction of ESW in order to better interpret MEX ion data. In this paper we use MGS estimates of ESW to express MEX ion measurements in Mars‐Sun‐Electric field (MSE) coordinates. A new methodological technique used in this study is the limitation of the analysis to a particular instrument mode for which the overlap between proton contamination and plume observations is rare. This allows for confident energetic heavy ion identification outside the induced magnetosphere boundary. On the dayside, we observe high count rates of 2–15 keV heavy ions more frequently in the +ESW hemisphere (+ZMSE) than in the −ESW hemisphere, but on the nightside the reverse asymmetry was found. The results are consistent with planetary origin ions being picked up by the solar wind convective electric field. Though a field of view hole hinders quantification of plume fluxes and velocity space, this new energetic heavy ion identification technique means that Mars Express should prove useful in expanding the time period available to assess general plume loss variation with drivers.Plain Language SummaryThe location and flow direction of oxygen escaping Mars’ atmosphere is organized by a global‐scale electric field associated with the Sun’s flowing magnetic field. While the Mars Express (MEX) satellite is less well equipped than Mars Atmosphere and Volatile Evolution (MAVEN) to estimate exact flux values of ions accelerated by this electric field, our demonstration that MEX can see this population statistically opens a new window of time (pre‐MAVEN) to studies of the variability of this atmospheric escape channel.Key PointsMars Express heavy ion data outside the magnetic boundary show a statistical asymmetry consistent with other energetic plume studiesThe energetic plume is more prevalent on the dayside (i.e., X > 0), while for X < 0 higher count rates in the +ESW direction were not seenFor a specific instrument setting, overlap between proton contamination and the plume is rare, allowing for confident plume identification
dc.publisherSP‐1240, ESA Publications Division
dc.publisherWiley Periodicals, Inc.
dc.subject.otherion escape
dc.subject.otherconvective electric field
dc.subject.otherMars Express
dc.subject.otherMEX data analysis
dc.subject.otherMars ion loss
dc.titleInfluence of the Interplanetary Convective Electric Field on the Distribution of Heavy Pickup Ions Around Mars
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142551/1/jgra53999.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142551/2/jgra53999_am.pdf
dc.identifier.doi10.1002/2017JA024463
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceLuhmann, J. G., & Schwingenschuh, K. ( 1990 ). A model of the energetic ion environment of Mars. Journal of Geophysical Research, 95 ( A2 ), 939 – 945. https://doi.org/10.1029/JA095iA02p00939
dc.identifier.citedreferenceEdberg, N. J. T., Auster, U., Barabash, S., Bößwetter, A., Brain, D. A., Burch, J. L., … Trotignon, J. G. ( 2009 ). Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment. Annales de Geophysique, 27 ( 12 ), 4533 – 4545. https://doi.org/10.5194/angeo‐27‐4533‐2009
dc.identifier.citedreferenceFang, X., Liemohn, M. W., Nagy, A. F., Ma, Y., De Zeeuw, D. L., Kozyra, J. U., & Zurbuchen, T. ( 2008 ). Pickup oxygen ion distribution around Mars. Journal of Geophysical Research, 113, A02210. https://doi.org/10.1029/2007JA012736
dc.identifier.citedreferenceFedorov, A., Budnik, E., Sauvaud, J. A., Mazelle, C., Barabash, S., Lundin, R., … Dierker, C. ( 2006 ). Structure of the Martian wake. Icarus, 182 ( 2 ), 329 – 336. https://doi.org/10.1016/j.icarus.2005.09.021
dc.identifier.citedreferenceFedorov, A., Ferrier, C., Sauvaud, J. A., Barabash, S., Zhang, T. L., Mazelle, C., … Bochsler, P. ( 2008 ). Comparative analysis of Venus and Mars magnetotails. Planetary and Space Science, 56 ( 6 ), 812 – 817. https://doi.org/10.1016/j.pss.2007.12.012
dc.identifier.citedreferenceFraenz, M., Dubinin, E., Andrews, D., Barabash, S., Nilsson, H., & Fedorov, A. ( 2015 ). Cold ion escape from the Martian ionosphere. Planetary and Space Science, 119, 92 – 102. https://doi.org/10.1016/j.pss.2015.07.012
dc.identifier.citedreferenceHarnett, E. M., & Winglee, R. M. ( 2006 ). Three‐dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events. Journal of Geophysical Research, 111, A09213. https://doi.org/10.1029/2006JA011724
dc.identifier.citedreferenceKallio, E., & Koskinen, H. ( 1999 ). A test particle simulation of the motion of oxygen ions and the solar wind protons. Journal of Geophysical Research, 104 ( A1 ), 557 – 579. https://doi.org/10.1029/1998JA900043
dc.identifier.citedreferenceKallio, E., Koskinen, H., Barabash, S., Nairn, C. M. C., & Schwingenschuh, K. ( 1995 ). Oxygen outflow in the Martian magnetotail. Geophysical Research Letters, 22 ( 18 ), 2449 – 2452. https://doi.org/10.1029/95GL02474
dc.identifier.citedreferenceKallio, E., Fedorov, A., Barabash, S., Janhunen, R., Koskinen, H., Schmidt, W., … Sharber, J. R. ( 2006 ). Energisation of O+ and O2+ ions at Mars: An analysis of a 3‐D quasi‐neutral hybrid model simulation. Space Science Reviews, 126, 39 – 62.
dc.identifier.citedreferenceLiemohn, M. W., Ma, Y., Frahm, R. A., Fang, X., Kozyra, J. U., Nagy, A. F., … Lundin, R. ( 2007 ). Mars global MHD predictions of magnetic connectivity between the dayside ionosphere and the magnetospheric flanks. Space Science Reviews, 126 ( 1‐4 ), 63 – 76. https://doi.org/10.1007/s11214‐006‐9116‐8
dc.identifier.citedreferenceLiemohn, M. W., Curry, S. M., Fang, X., & Ma, Y. ( 2013 ). Comparison of high‐altitude production and ionospheric outflow contributions to O + loss at Mars. Journal of Geophysical Research: Space Physics, 118, 4093 – 4107. https://doi.org/10.1002/jgra.50388
dc.identifier.citedreferenceLiemohn, M. W., Johnson, B. C., Fränz, M., & Barabash, S. ( 2014 ). Mars Express observations of high altitude planetary ion beams and their relation to the “energetic plume” loss channel. Journal of Geophysical Research, 119, 9702 – 9713. https://doi.org/10.1002/2014JA019994
dc.identifier.citedreferenceLuhmann, J. G., Ma, Y.‐J., Brain, D. A., Ulusen, D., Lillis, R. J., Halekas, J. S., & Espley, J. R. ( 2015 ). Solar wind interaction effects on the magnetic fields around Mars: Consequences for interplanetary and crustal field measurements. Planetary and Space Science, 117, 15 – 23. https://doi.org/10.1016/j.pss.2015.05.004
dc.identifier.citedreferenceLundin, R., & Dubinin, E. M. ( 1992 ). Phobos‐2 results on the ionospheric plasma escape from Mars. Advances in Space Research, 12 ( 9 ), 255 – 263. https://doi.org/10.1016/0273‐1177(92)90338‐X
dc.identifier.citedreferenceLundin, R., Barabash, S., Andersson, H., Holmström, M., Grigoriev, A., Yamauchi, M., … Bochsler, P. ( 2004 ). Solar wind‐induced atmospheric erosion at Mars: First results from ASPREA‐3 on Mars Express. Science, 305, 1993 – 1936.
dc.identifier.citedreferenceLundin, R., Barabash, S., Holmström, M., Nilsson, H., Yamauchi, M., Fraenz, M., & Dubinin, E. M. ( 2008 ). A comet‐like escape of ionospheric plasma from Mars. Geophysical Research Letters, 35, L18203. https://doi.org/10.1029/2008GL034811
dc.identifier.citedreferenceLundin, R., Barabash, S., Yamauchi, M., Nilsson, H., & Brain, D. ( 2011 ). On the relation between plasma escape and the Martian crustal magnetic field. Geophysical Research Letters, 38, L02102. https://doi.org/10.1029/2010GL046019
dc.identifier.citedreferenceModolo, R., Chanteur, G. M., Dubinin, E., & Matthews, A. P. ( 2005 ). Influence of the solar EUV flux on the Martian plasma environment. Annales de Geophysique, 23 ( 2 ), 433 – 444. https://doi.org/10.5194/angeo‐23‐433‐2005
dc.identifier.citedreferenceNajib, D., Nagy, A. F., Tth, G., & Ma, Y. ( 2011 ). Three‐dimensional, multifluid, high spatial resolution mhd model studies of the solar wind interaction with mars. Journal of Geophysical Research, 116, A05204. https://doi.org/10.1029/2010JA016272
dc.identifier.citedreferenceNilsson, H., Edberg, N. J. T., Stenberg, G., Barabash, S., Holmstrm, M., Futaana, Y., … Fedorov, A. ( 2011 ). Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields. Icarus, 215 ( 2 ), 475 – 484. https://doi.org/10.1016/j.icarus.2011.08.003
dc.identifier.citedreferenceNilsson, H., Stenberg, G., Futaana, S., Holmstrom, M., Barabash, S., Lundin, R., … Fedorov, A. ( 2012 ). Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes. Earth, Planets and Space, 64 ( 2 ), 135 – 148. https://doi.org/10.5047/eps.2011.04.011
dc.identifier.citedreferenceVignes, D., Mazelle, C., Rme, H., Acufia, M. H., Connerney, J. E. P., Mitchell, D. L., … Univer‐, R. ( 2000 ). Shapes of the bow shock and the magnetic pile‐up boundary from the observations of the MAG/ER experiment onboard Mars Global Surveyor. Geophysical Research Letters, 27 ( 1 ), 49 – 52. https://doi.org/10.1029/1999GL010703
dc.identifier.citedreferenceWang, X. D., Barabash, S., Futaana, Y., Grigoriev, A., & Wurz, P. ( 2013 ). Directionality and variability of energetic neutral hydrogen fluxes observed by Mars Express. Journal of Geophysical Research: Space Physics, 118, 7635 – 7642. https://doi.org/10.1002/2013JA018876
dc.identifier.citedreferenceXu, S., Mitchell, D., Liemohn, M., Fang, X., Ma, Y., Luhmann, J., … Jakosky, B. ( 2017 ). Martian low‐altitude magnetic topology deduced from MAVEN/SWEA observations. Journal of Geophysical Research: Space Physics, 122, 1831 – 1852. https://doi.org/10.1002/2016JA023467
dc.identifier.citedreferenceBarabash, S., Dubinin, E., Pisarenko, N., Lundin, R., & Russell, C. T. ( 1991 ). Picked‐up protons near Mars‐PHOBOS observations. Geophysical Research Letters, 18 ( 10 ), 1805 – 1808. https://doi.org/10.1029/91GL02082
dc.identifier.citedreferenceBarabash, S., Lundin, R., Andersson, H., Gimholt, J., Holmstrom, M., Norberg, O., … Bochsler, P. ( 2004 ). ASPERA‐3: Analyser of Space Plasmas and Energetic Ions for Mars Express. In Mars Express: The Scientific Payload (pp. 121 – 139 ). Noordwijk, Netherlands: SP‐1240, ESA Publications Division.
dc.identifier.citedreferenceBarabash, S., Lundin, R., Andersson, H., Brinkfeldt, K., Grigoriev, A., Gunell, H., … Thocaven, J.‐J. ( 2006 ). The Analyzer of Space Plasmas and Energetic Atoms (ASPERA‐3) for the Mars Express mission. Space Science Reviews, 126, 113 – 164.
dc.identifier.citedreferenceBarabash, S., Fedorov, A., Lundin, R., & Sauvaud, J.‐A. ( 2007 ). Martian atmospheric erosion rates. Science, 315 ( 5811 ), 501 – 503. https://doi.org/10.1126/science.1134358
dc.identifier.citedreferenceBoesswetter, A., Bagdonat, T., Motschmann, U., & Sauer, K. ( 2004 ). Plasma boundaries at Mars: A 3‐D simulation study. Annales de Geophysique, 22 ( 12 ), 4363 – 4379. https://doi.org/10.5194/angeo‐22‐4363‐2004
dc.identifier.citedreferenceBrain, D. A., Halekas, J. S., Lillis, R., Mitchell, D. L., Lin, R. P., & Crider, D. H. ( 2005 ). Variability of the altitude of the Martian sheath. Geophysical Research Letters, 32, L18203. https://doi.org/10.1029/2005GL023126
dc.identifier.citedreferenceBrain, D. A., Mitchell, D. L., & Halekas, J. S. ( 2006 ). The magnetic field draping direction at Mars from April 1999 through August 2004. Icarus, 182 ( 2 ), 464 – 473. https://doi.org/10.1016/j.icarus.2005.09.023
dc.identifier.citedreferenceBrain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E. P., Bougher, S. W., Curry, S., … Seki, K. ( 2015 ). The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophysical Research Letters, 42, 9142 – 9148. https://doi.org/10.1002/2015GL065293
dc.identifier.citedreferenceCarlsson, E., Brain, D., Luhmann, J., Barabash, S., Grigoriev, A., Nilsson, H., & Lundin, R. ( 2008 ). Influence of IMF draping direction and crustal magnetic field location on Martian ion beams. Planetary and Space Science, 56 ( 6 ), 861 – 867. https://doi.org/10.1016/j.pss.2007.12.016
dc.identifier.citedreferenceCurry, S. M., Liemohn, M. W., Fang, X., Ma, Y., Nagy, A. F., & Espley, J. ( 2013 ). The influence of production mechanisms on pickup ion loss at Mars. Journal of Geophysical Research: Space Physics, 118, 554 – 569. https://doi.org/10.1029/2012JA017665
dc.identifier.citedreferenceDieval, C., Morgan, D. D., Nemec, F., & Gurnett, D. A. ( 2014 ). MARSIS observations of the Martian nightside ionosphere dependence on solar wind conditions. Journal of Geophysical Research: Space Physics, 119, 4077 – 4093. https://doi.org/10.1002/2014JA019788
dc.identifier.citedreferenceDong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E., … Jakosky, B. M. ( 2015 ). Strong plume fl uxes at Mars observed by MAVEN: An important planetary ion escape channel. Geophysical Research Letters, 42, 8942 – 8950. https://doi.org/10.1002/2015GL065346
dc.identifier.citedreferenceDong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E. P., … Jakosky, B. M. ( 2017 ). Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. Journal of Geophysical Research: Space Physics, 122, 4009 – 4022. https://doi.org/10.1002/2016JA023517
dc.identifier.citedreferenceDubinin, E. M., Sauer, K., Lundin, R., Baumgärtel, K., & Bogdanov, A. ( 1996 ). Structuring of the transition region (plasma mantle) of the Martian magnetosphere. Geophysical Research Letters, 23 ( 7 ), 785 – 788.
dc.identifier.citedreferenceDubinin, E., Fränz, M., Woch, J., Roussos, E., Barabash, S., Lundin, R., … Acuña, M. ( 2006 ). Plasma morphology at Mars. Aspera‐3 observations. Space Science Reviews, 126 ( 1‐4 ), 209 – 238. https://doi.org/10.1007/s11214‐006‐9039‐4
dc.identifier.citedreferenceDubinin, E., Fränz, M., Woch, J., Roussos, E., Barabash, S., Lundin, R., … Acuña, M. ( 2008 ). Plasma morphology at Mars: ASPERA‐3 observations. Space Science Reviews, 126 ( 1‐4 ), 209 – 238. https://doi.org/10.1007/s11214‐006‐9039‐4
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Fedorov, A., Lundin, R., Edberg, N., Duru, F., & Vaisberg, O. ( 2011 ). Ion energization and escape on Mars and Venus. Space Science Reviews, 162 ( 1‐4 ), 173 – 211. https://doi.org/10.1007/s11214‐011‐9831‐7
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.