Show simple item record

Accuracy of tumor segmentation from multi-parametric prostate MRI and 18F-choline PET/CT for focal prostate cancer therapy applications

dc.contributor.authorPiert, Morand
dc.contributor.authorShankar, Prasad R
dc.contributor.authorMontgomery, Jeffrey
dc.contributor.authorKunju, Lakshmi P
dc.contributor.authorRogers, Virginia
dc.contributor.authorSiddiqui, Javed
dc.contributor.authorRajendiran, Thekkelnaycke
dc.contributor.authorHearn, Jason
dc.contributor.authorGeorge, Arvin
dc.contributor.authorShao, Xia
dc.contributor.authorDavenport, Matthew S
dc.date.accessioned2018-04-01T12:54:49Z
dc.date.available2018-04-01T12:54:49Z
dc.date.issued2018-03-27
dc.identifier.citationEJNMMI Research. 2018 Mar 27;8(1):23
dc.identifier.urihttp://dx.doi.org/10.1186/s13550-018-0377-5
dc.identifier.urihttps://hdl.handle.net/2027.42/142871
dc.description.abstractAbstract Background The study aims to assess the accuracy of multi-parametric prostate MRI (mpMRI) and 18F-choline PET/CT in tumor segmentation for clinically significant prostate cancer. 18F-choline PET/CT and 3 T mpMRI were performed in 10 prospective subjects prior to prostatectomy. All subjects had a single biopsy-confirmed focus of Gleason ≥ 3+4 cancer. Two radiologists (readers 1 and 2) determined tumor boundaries based on in vivo mpMRI sequences, with clinical and pathologic data available. 18F-choline PET data were co-registered to T2-weighted 3D sequences and a semi-automatic segmentation routine was used to define tumor volumes. Registration of whole-mount surgical pathology to in vivo imaging was conducted utilizing two ex vivo prostate specimen MRIs, followed by gross sectioning of the specimens within a custom-made 3D-printed plastic mold. Overlap and similarity coefficients of manual segmentations (seg1, seg2) and 18F-choline-based segmented lesions (seg3) were compared to the pathologic reference standard. Results All segmentation methods greatly underestimated the true tumor volumes. Human readers (seg1, seg2) and the PET-based segmentation (seg3) underestimated an average of 79, 80, and 58% of the tumor volumes, respectively. Combining segmentation volumes (union of seg1, seg2, seg3 = seg4) decreased the mean underestimated tumor volume to 42% of the true tumor volume. When using the combined segmentation with 5 mm contour expansion, the mean underestimated tumor volume was significantly reduced to 0.03 ± 0.05 mL (2.04 ± 2.84%). Substantial safety margins up to 11–15 mm were needed to include all tumors when the initial segmentation boundaries were drawn by human readers or the semi-automated 18F-choline segmentation tool. Combining MR-based human segmentations with the metabolic information based on 18F-choline PET reduced the necessary safety margin to a maximum of 9 mm to cover all tumors entirely. Conclusions To improve the outcome of focal therapies for significant prostate cancer, it is imperative to recognize the full extent of the underestimation of tumor volumes by mpMRI. Combining metabolic information from 18F-choline with MRI-based segmentation can improve tumor coverage. However, this approach requires confirmation in further clinical studies.
dc.titleAccuracy of tumor segmentation from multi-parametric prostate MRI and 18F-choline PET/CT for focal prostate cancer therapy applications
dc.typeArticleen_US
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142871/1/13550_2018_Article_377.pdf
dc.language.rfc3066en
dc.rights.holderThe Author(s).
dc.date.updated2018-04-01T12:54:50Z
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.