Show simple item record

Multiscale Currents Observed by MMS in the Flow Braking Region

dc.contributor.authorNakamura, Rumi
dc.contributor.authorVarsani, Ali
dc.contributor.authorGenestreti, Kevin J.
dc.contributor.authorLe Contel, Olivier
dc.contributor.authorNakamura, Takuma
dc.contributor.authorBaumjohann, Wolfgang
dc.contributor.authorNagai, Tsugunobu
dc.contributor.authorArtemyev, Anton
dc.contributor.authorBirn, Joachim
dc.contributor.authorSergeev, Victor A.
dc.contributor.authorApatenkov, Sergey
dc.contributor.authorErgun, Robert E.
dc.contributor.authorFuselier, Stephen A.
dc.contributor.authorGershman, Daniel J.
dc.contributor.authorGiles, Barbara J.
dc.contributor.authorKhotyaintsev, Yuri V.
dc.contributor.authorLindqvist, Per‐arne
dc.contributor.authorMagnes, Werner
dc.contributor.authorMauk, Barry
dc.contributor.authorPetrukovich, Anatoli
dc.contributor.authorRussell, Christopher T.
dc.contributor.authorStawarz, Julia
dc.contributor.authorStrangeway, Robert J.
dc.contributor.authorAnderson, Brian
dc.contributor.authorBurch, James L.
dc.contributor.authorBromund, Ken R.
dc.contributor.authorCohen, Ian
dc.contributor.authorFischer, David
dc.contributor.authorJaynes, Allison
dc.contributor.authorKepko, Laurence
dc.contributor.authorLe, Guan
dc.contributor.authorPlaschke, Ferdinand
dc.contributor.authorReeves, Geoff
dc.contributor.authorSinger, Howard J.
dc.contributor.authorSlavin, James A.
dc.contributor.authorTorbert, Roy B.
dc.contributor.authorTurner, Drew L.
dc.date.accessioned2018-04-04T18:45:43Z
dc.date.available2019-04-01T15:01:10Zen
dc.date.issued2018-02
dc.identifier.citationNakamura, Rumi; Varsani, Ali; Genestreti, Kevin J.; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A.; Apatenkov, Sergey; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per‐arne ; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Burch, James L.; Bromund, Ken R.; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J.; Slavin, James A.; Torbert, Roy B.; Turner, Drew L. (2018). "Multiscale Currents Observed by MMS in the Flow Braking Region." Journal of Geophysical Research: Space Physics 123(2): 1260-1278.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/142880
dc.description.abstractWe present characteristics of current layers in the offâ equatorial nearâ Earth plasma sheet boundary observed with high timeâ resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawnâ dusk direction. Fieldâ aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin fieldâ aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the fieldâ aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E à  B drifting ions, and magnetized electrons. Our observations show that both the nearâ Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed fieldâ aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the fieldâ aligned currents in the offâ equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm fieldâ aligned current system.Key PointsMultiscale fieldâ aligned currents in the boundary of the expanding plasma sheet during plasma jet braking intervals are resolvedIntense Hall current layers are found at the inner boundary of the hot Earthward streaming ion jets and flow shear regionsBoth plasma jet diversion and Hall effects from reconnection region contribute to the structure of the substorm wedge currents
dc.publisherWiley Periodicals, Inc.
dc.publisherEuropean Space Agency
dc.subject.otherMagnetospheric Multiscale (MMS)
dc.subject.otherfieldâ aligned current
dc.subject.otherflow braking
dc.subject.othermagnetic reconnection
dc.subject.otherplasma sheet boundary
dc.titleMultiscale Currents Observed by MMS in the Flow Braking Region
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142880/1/jgra54094.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142880/2/jgra54094_am.pdf
dc.identifier.doi10.1002/2017JA024686
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceFu, H. S., Khotyaintsev, Y. V., André, M., & Vaivads, A. ( 2011 ). Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts. Geophysical Research Letters, 38, L16104. https://doi.org/10.1029/2011GL048528
dc.identifier.citedreferenceFujimoto, K., & Takamoto, M. ( 2016 ). Ion and electron dynamics generating the hall current in the exhaust far downstream of the reconnection xâ line. Physics of Plasmas, 23 ( 1 ), 012903. https://doi.org/10.1063/1.4940322
dc.identifier.citedreferenceMcPherron, R. L., Russell, C. T., & Aubry, M. P. ( 1973 ). Satellite studies of magnetospheric substorms on August 15, 1968. 9. Phenomenological model for substorms. Journal of Geophysical Research, 78 ( 16 ), 3131 â 3149. https://doi.org/10.1029/JA078i016p03131
dc.identifier.citedreferenceMauk, B. H., Blake, J. B., Baker, D. N., Clemmons, J. H., Reeves, G. D., Spence, H. E., et al. ( 2014 ). The energetic particle detector (EPD) investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) mission. Space Science Reviews, 199 ( 1â 4 ), 471 â 514. https://doi.org/10.1007/s11214â 014â 0055â 5
dc.identifier.citedreferenceLui, A. T. Y. ( 2013 ). Crossâ tail current evolution during substorm dipolarization. Annales de Geophysique, 31 ( 6 ), 1131 â 1142. https://doi.org/10.5194/angeoâ 31â 1131â 2013
dc.identifier.citedreferenceLiu, J., Angelopoulos, V., Zhou, X.â Z., & Runov, A. ( 2014 ). Magnetic flux transport by dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 119, 909 â 926. https://doi.org/10.1002/2013JA019395
dc.identifier.citedreferenceLindqvist, P.â A., Olsson, G., Torbert, R. B., King, B., Granoff, M., Rau, D., et al. ( 2016 ). The spinâ plane double probe electric field instrument for MMS. Space Science Reviews, 199 ( 1â 4 ), 137 â 165. https://doi.org/10.1007/s11214â 014â 0116â 9
dc.identifier.citedreferenceLe Contel, O., Nakamura, R., Breuillard, H., Argall, M. R., Graham, D. B., Fischer, D., et al. ( 2017 ). Lowerâ hybrid drift waves and electromagnetic electron spaceâ phase holes associated with dipolarization fronts and fieldâ aligned currents observed by the Magnetospheric Multiscale mission during a substorm. Journal of Geophysical Research: Space Physics, 122, 12,236 â 12,257. https://doi.org/10.1002/2017JA024550
dc.identifier.citedreferenceKokubun, S., Yamamoto, T., Acuña, M. H., Hayashi, K., Shiokawa, K., & Kawano, H. ( 1994 ). The GEOTAIL magnetic field experiment. Journal of Geomagnetism and Geoelectricity, 46 ( 1 ), 7 â 21. https://doi.org/10.5636/jgg.46.7
dc.identifier.citedreferenceHoshino, M., Mukai, T., Terasawa, T., & Shinohara, I. ( 2001 ). Suprathermal electron acceleration in magnetic reconnection. Journal of Geophysical Research, 106 ( A11 ), 25,979 â 25,997. https://doi.org/10.1029/2001JA900052
dc.identifier.citedreferenceHigashimori, K., & Hoshino, M. ( 2012 ). The relation between ion temperature anisotropy and formation of slow shocks in collisionless magnetic reconnection. Journal of Geophysical Research, 117, A01220. https://doi.org/10.1029/2011JA016817
dc.identifier.citedreferenceHenderson, M. G., Reeves, G. D., & Murphree, J. S. ( 1998 ). Are northâ south aligned auroral structures an ionospheric manifestation of bursty bulk flows? Geophysical Research Letters, 25 ( 19 ), 3737 â 3740. https://doi.org/10.1029/98GL02692
dc.identifier.citedreferenceBirn, J., & Hesse, M. ( 1996 ). Details of current disruption and diversion in simulations of magnetotail dynamics. Journal of Geophysical Research, 101 ( A7 ), 15,345 â 15,358. https://doi.org/10.1029/96JA00887
dc.identifier.citedreferenceBirn, J., & Hesse, M. ( 2014 ). The substorm current wedge: Further insights from MHD simulations. Journal of Geophysical Research: Space Physics, 119, 3503 â 3513. https://doi.org/10.1002/2014JA019863
dc.identifier.citedreferenceBirn, J., Hesse, M., Nakamura, R., & Zaharia, S. ( 2013 ). Particle acceleration in dipolarization events. Journal of Geophysical Research: Space Physics, 118, 1960 â 1971. https://doi.org/10.1002/jgra.50132
dc.identifier.citedreferenceBirn, J., Nakamura, R., Panov, E., & Hesse, M. ( 2011 ). Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection. Journal of Geophysical Research, 116, A01210. https://doi.org/10.1029/2010JA016083
dc.identifier.citedreferenceBlake, J. B., Mauk, B. H., Baker, D. N., Carranza, P., Clemmons, J. H., Craft, J., et al. ( 2016 ). The fly’s eye energetic particle spectrometer (FEEPS) sensor for the Magnetospheric Multiscale (MMS). Space Science Reviews, 199 ( 1â 4 ), 309 â 329. https://doi.org/10.1007/s11214â 015â 0163â x
dc.identifier.citedreferenceChanteur, G. ( 1998 ). Spatial interpolation for four spacecraft: Application to magnetic gradients. In G.   Paschmann & P.   Daly (Eds.), Analysis methods for multispacecraft data (pp. 349 â 369 ). Noordwijk, Netherlands: European Space Agency.
dc.identifier.citedreferenceEgedal, J., Daughton, W., & Le, A. ( 2012 ). Largeâ scale electron acceleration by parallel electric fields during magnetic reconnection. Nature Physics, 8 ( 4 ), 321 â 324. https://doi.org/10.1038/nphys2249
dc.identifier.citedreferenceErgun, R. E., Holmes, J. C., Goodrich, K. A., Wilder, F. D., Stawarz, J. E., Eriksson, S., et al. ( 2016 ). Magnetospheric multiscale observations of largeâ amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause. Geophysical Research Letters, 43, 5626 â 5634. https://doi.org/10.1002/2016GL068992
dc.identifier.citedreferenceFujimoto, K. ( 2014 ). Wave activities in separatrix regions of magnetic reconnection. Geophysical Research Letters, 41, 2721 â 2728. https://doi.org/10.1002/2014GL059893
dc.identifier.citedreferenceYoung, D. T., Burch, J. L., Gomez, R. G., de Los Santos, A., Miller, G. P., Wilson, P., et al. ( 2014 ). Hot Plasma Composition Analyzer for the Magnetospheric Multiscale mission. Space Science Reviews, 199 ( 1â 4 ), 407 â 470. https://doi.org/10.1007/s11214â 014â 0119â 6
dc.identifier.citedreferenceWygant, J. R., Keiling, A., Cattell, C. A., Johnson, M., Lysak, R. L., Temerin, M., et al. ( 2000 ). Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheetâ tail lobe boundary to UVI images: An energy source for the aurora. Journal of Geophysical Research, 105 ( A8 ), 18,675 â 18,692. https://doi.org/10.1029/1999JA900500
dc.identifier.citedreferenceTu, J.â N., Tsuruda, K., Hayakawa, H., Matsuoka, A.. Mukai, T., Nagano, I., & Yagitani, S.. ( 2000 ). Statistical nature of impulsive electric fields associated with fast ion flow in the nearâ Earth plasma sheet. Journal of Geophysical Research, 105 ( A8 ), 18, 901 â 18, 907. https://doi.org/10.1029/1999JA000428
dc.identifier.citedreferenceTsyganenko, N. A. ( 1989 ). A magnetospheric magnetic field model with a warped tail current sheet. Planetary and Space Science, 37 ( 1 ), 5 â 20. https://doi.org/10.1016/0032â 0633(89)90066â 4
dc.identifier.citedreferenceSinger, H., Matheson, L., Grubb, R., Newman, A., & Bouwer, S. ( 1996 ). Monitoring space weather with the GOES magnetometers, in GOESâ 8 and beyond. In E. R.   Washwell (Ed.), Proceedings of the SPIE Conference (Vol. 2812, pp. 299 â 308 ).
dc.identifier.citedreferenceSergeev, V. A., Angelopoulos, V., & Nakamura, R. ( 2012 ). Recent advances in understanding substorm dynamics. Geophysical Research Letters, 39, L05101. https://doi.org/10.1029/2012GL050859
dc.identifier.citedreferenceSchwartz, S. ( 1998 ). Shock and discontinuity normal, mach numbers, and related parameters. In G.   Paschmann & P.   Daly (Eds.), Analysis methods for multispacecraft data (pp. 249 â 270 ). Noordwijk, Netherlands: European Space Agency.
dc.identifier.citedreferenceSchödel, R., Nakamura, R., & Baumjohann, W. ( 2001 ). T. Mukai, rapid flux transport and plasma sheet reconfiguration. Journal of Geophysical Research, 106 ( A5 ), 8381 â 8390. https://doi.org/10.1029/2000JA900159
dc.identifier.citedreferenceSchmid, D., Nakamura, R., Volwerk, M., Plaschke, F., Narita, Y., Baumjohann, W., et al. ( 2016 ). A comparative study of dipolarization fronts at MMS and cluster. Geophysical Research Letters, 43, 6012 â 6019. https://doi.org/10.1002/2016GL069520
dc.identifier.citedreferenceSauvaud, J.â A., Louarn, P., Fruit, G., Stenuit, H., Vallat, C., Dandouras, J., et al. ( 2004 ). Case studies of the dynamics of ionospheric ions in the Earth’s magnetotail. Journal of Geophysical Research, 109, A01212. https://doi.org/10.1029/2003JA009996
dc.identifier.citedreferenceRussell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., et al. ( 2016 ). The Magnetospheric Multiscale magnetometers. Space Science Reviews, 199 ( 1â 4 ), 189 â 256. https://doi.org/10.1007/s11214â 014â 0057â 3
dc.identifier.citedreferenceRunov, A., Angelopoulos, V., Gabrielse, C., Zhou, X.â Z., Turner, D., & Plaschke, F. ( 2013 ). Electron fluxes and pitchâ angle distributions at dipolarization fronts: THEMIS multipoint observations. Journal of Geophysical Research: Space Physics, 118, 744 â 755. https://doi.org/10.1002/jgra.50121
dc.identifier.citedreferencePollock, J. C., et al. ( 2016 ). (FPI) for the Magnetospheric Multiscale (MMS) Mission. Space Science Reviews, 199 ( 1â 4 ), 331 â 406. https://doi.org/10.1007/s11214â 016â 0245â 4
dc.identifier.citedreferencePanov, E. V., Baumjohann, W., Nakamura, R., Amm, O., Kubyshkina, M. V., Glassmeier, K. H., et al. ( 2013 ). Ionospheric response to oscillatory flow braking in the magnetotail. Journal of Geophysical Research: Space Physics, 118, 1529 â 1544. https://doi.org/10.1002/jgra.50190
dc.identifier.citedreferencePalin, L., Jacquey, C., Opgenoorth, H., Connors, M., Sergeev, V., Sauvaud, J. A., et al. ( 2015 ). Threeâ dimensional current systems and ionospheric effects associated with small dipolarization fronts. Journal of Geophysical Research: Space Physics, 120, 3739 â 3757. https://doi.org/10.1002/2015JA021040
dc.identifier.citedreferenceNakamura, T. K. M., Nakamura, R., Alexandrova, A., Kubota, Y., & Nagai, T. ( 2012 ). Hall magnetohydrodynamic effects for threeâ dimensional magnetic reconnection with finite width along the direction of the current. Journal of Geophysical Research, 117, A03220. https://doi.org/10.1029/2011JA017006
dc.identifier.citedreferenceNakamura, R., Retinò, A., Baumjohann, W., Volwerk, M., Erkaev, N., Klecker, B., et al. ( 2009 ). Evolution of dipolarization in the nearâ earth current sheet induced by earthward rapid flux transport. Annales de Geophysique, 27 ( 4 ), 1743 â 1754. https://doi.org/10.5194/angeoâ 27â 1743â 2009
dc.identifier.citedreferenceNakamura, R., Nagai, T., Birn, J., Sergeev, V. A., le Contel, O., Varsani, A., et al. ( 2017 ). Nearâ earth plasma sheet boundary dynamics during substorm dipolarization. Earth, Planets and Space, 69 ( 1 ), 129. https://doi.org/10.1186/s40623â 017â 0707â 2
dc.identifier.citedreferenceNakamura, R., Baumjohann, W., Schödel, R., Brittnacher, M., Sergeev, V. A., Kubyshkina, M., et al. ( 2001 ). Earthward flow bursts, auroral streamers, and small expansions. Journal of Geophysical Research, 106 ( A6 ), 10,791 â 10,802. https://doi.org/10.1029/2000JA000306
dc.identifier.citedreferenceNakamura, M. S., Fujimoto, M., & Maezawa, K. ( 1998 ). Ion dynamics and resultant velocity space distributions in the course of magnetic reconnection. Journal of Geophysical Research, 103 ( A3 ), 4531 â 4546. https://doi.org/10.1029/97JA01843
dc.identifier.citedreferenceMoore, T. E., & Horwitz, J. L. ( 2007 ). Stellar ablation of planetary atmospheres. Reviews of Geophysics, 45, RG3002. https://doi.org/10.1029/2005RG000194
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.