Show simple item record

The immunophenotype of amniotic fluid leukocytes in normal and complicated pregnancies

dc.contributor.authorGomez‐lopez, Nardhy
dc.contributor.authorRomero, Roberto
dc.contributor.authorXu, Yi
dc.contributor.authorMiller, Derek
dc.contributor.authorLeng, Yaozhu
dc.contributor.authorPanaitescu, Bogdan
dc.contributor.authorSilva, Pablo
dc.contributor.authorFaro, Jonathan
dc.contributor.authorAlhousseini, Ali
dc.contributor.authorGill, Navleen
dc.contributor.authorHassan, Sonia S
dc.contributor.authorHsu, Chaur‐dong
dc.date.accessioned2018-04-04T18:49:00Z
dc.date.available2019-05-13T14:45:25Zen
dc.date.issued2018-04
dc.identifier.citationGomez‐lopez, Nardhy ; Romero, Roberto; Xu, Yi; Miller, Derek; Leng, Yaozhu; Panaitescu, Bogdan; Silva, Pablo; Faro, Jonathan; Alhousseini, Ali; Gill, Navleen; Hassan, Sonia S; Hsu, Chaur‐dong (2018). "The immunophenotype of amniotic fluid leukocytes in normal and complicated pregnancies." American Journal of Reproductive Immunology 79(4): n/a-n/a.
dc.identifier.issn1046-7408
dc.identifier.issn1600-0897
dc.identifier.urihttps://hdl.handle.net/2027.42/142907
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfetal immunity
dc.subject.otherintraâ amniotic inflammation
dc.subject.otherleukocytes
dc.subject.othermacrophages
dc.subject.othermicrobes
dc.subject.othermicrobial invasion of the amniotic cavity
dc.subject.othermonocytes
dc.subject.othermucosal immunity
dc.subject.otherneutrophils
dc.subject.othernatural killer (NK) cells
dc.subject.otherT cells
dc.subject.otherbacteria
dc.subject.otherB cells
dc.subject.otherintraâ amniotic infection
dc.subject.otherinnate lymphoid cells
dc.subject.otherimmune cells
dc.titleThe immunophenotype of amniotic fluid leukocytes in normal and complicated pregnancies
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142907/1/aji12827.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142907/2/aji12827_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142907/3/aji12827-sup-0001-FigS1.pdf
dc.identifier.doi10.1111/aji.12827
dc.identifier.sourceAmerican Journal of Reproductive Immunology
dc.identifier.citedreferenceKim MJ, Romero R, Gervasi MT, et al. Widespread microbial invasion of the chorioamniotic membranes is a consequence and not a cause of intraâ amniotic infection. Lab Invest. 2009; 89: 924 â 936.
dc.identifier.citedreferenceMold JE, McCune JM. Immunological tolerance during fetal development: from mouse to man. Adv Immunol. 2012; 115: 73 â 111.
dc.identifier.citedreferenceRito DC, Viehl LT, Buchanan PM, Haridas S, Koenig JM. Augmented Th17â type immune responses in preterm neonates exposed to histologic chorioamnionitis. Pediatr Res. 2017; 81: 639 â 645.
dc.identifier.citedreferenceIvanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory ILâ 17 +  T helper cells. Cell. 2006; 126: 1121 â 1133.
dc.identifier.citedreferenceCrome SQ, Wang AY, Levings MK. Translational miniâ review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease. Clin Exp Immunol. 2010; 159: 109 â 119.
dc.identifier.citedreferenceYang BH, Hagemann S, Mamareli P, et al. Foxp3(+) T cells expressing RORgammat represent a stable regulatory Tâ cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 2016; 9: 444 â 457.
dc.identifier.citedreferenceSolvason N, Kearney JF. The human fetal omentum: a site of B cell generation. J Exp Med. 1992; 175: 397 â 404.
dc.identifier.citedreferenceAntin JH, Emerson SG, Martin P, Gadol N, Ault KA. Leuâ 1 +  (CD5 + ) B cells. A major lymphoid subpopulation in human fetal spleen: phenotypic and functional studies. J Immunol. 1986; 136: 505 â 510.
dc.identifier.citedreferenceHardy RR, Hayakawa K. CD5 B cells, a fetal B cell lineage. Adv Immunol. 1994; 55: 297 â 339.
dc.identifier.citedreferenceBhat NM, Kantor AB, Bieber MM, Stall AM, Herzenberg LA, Teng NN. The ontogeny and functional characteristics of human Bâ 1 (CD5 +  B) cells. Int Immunol. 1992; 4: 243 â 252.
dc.identifier.citedreferenceMasmoudi H, Motaâ Santos T, Huetz F, Coutinho A, Cazenave PA. All T15 Idâ positive antibodies (but not the majority of VHT15 +  antibodies) are produced by peritoneal CD5+ B lymphocytes. Int Immunol. 1990; 2: 515 â 520.
dc.identifier.citedreferenceBaumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J. Bâ 1 and Bâ 2 cellâ derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med. 2000; 192: 271 â 280.
dc.identifier.citedreferenceMartin F, Oliver AM, Kearney JF. Marginal zone and B1 B cells unite in the early response against Tâ independent bloodâ borne particulate antigens. Immunity. 2001; 14: 617 â 629.
dc.identifier.citedreferenceHardy RR. Bâ 1 B cell development. J Immunol. 2006; 177: 2749 â 2754.
dc.identifier.citedreferencePhillips JH, Hori T, Nagler A, Bhat N, Spits H, Lanier LL. Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon, delta proteins. J Exp Med. 1992; 175: 1055 â 1066.
dc.identifier.citedreferenceIvarsson MA, Loh L, Marquardt N, et al. Differentiation and functional regulation of human fetal NK cells. J Clin Invest. 2013; 123: 3889 â 3901.
dc.identifier.citedreferenceMor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol. 2017; 17: 469 â 482.
dc.identifier.citedreferenceHu XH, Tang MX, Mor G, Liao AH. Timâ 3: Expression on immune cells and roles at the maternalâ fetal interface. J Reprod Immunol. 2016; 118: 92 â 99.
dc.identifier.citedreferenceRomero R, Ceska M, Avila C, Mazor M, Behnke E, Lindley I. Neutrophil attractant/activating peptideâ 1/interleukinâ 8 in term and preterm parturition. Am J Obstet Gynecol. 1991; 165: 813 â 820.
dc.identifier.citedreferenceRomero R, Kusanovic JP, Espinoza J, et al. What is amniotic fluid â sludgeâ ? Ultrasound Obstet Gynecol. 2007; 30: 793 â 798.
dc.identifier.citedreferenceMaymon E, Romero R, Chaiworapongsa T, et al. Value of amniotic fluid neutrophil collagenase concentrations in preterm premature rupture of membranes. Am J Obstet Gynecol. 2001; 185: 1143 â 1148.
dc.identifier.citedreferenceHelmig BR, Romero R, Espinoza J, et al. Neutrophil elastase and secretory leukocyte protease inhibitor in prelabor rupture of membranes, parturition and intraâ amniotic infection. J Matern Fetal Neonatal Med. 2002; 12: 237 â 246.
dc.identifier.citedreferenceGravett MG, Novy MJ, Rosenfeld RG, et al. Diagnosis of intraâ amniotic infection by proteomic profiling and identification of novel biomarkers. JAMA. 2004; 292: 462 â 469.
dc.identifier.citedreferenceSoto E, Espinoza J, Nien JK, et al. Human betaâ defensinâ 2: a natural antimicrobial peptide present in amniotic fluid participates in the host response to microbial invasion of the amniotic cavity. J Matern Fetal Neonatal Med. 2007; 20: 15 â 22.
dc.identifier.citedreferenceGinhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014; 14: 392 â 404.
dc.identifier.citedreferenceGomez Perdiguero E, Klapproth K, Schulz C, et al. Tissueâ resident macrophages originate from yolkâ sacâ derived erythroâ myeloid progenitors. Nature. 2015; 518: 547 â 551.
dc.identifier.citedreferenceHoeffel G, Chen J, Lavin Y, et al. Câ Myb(+) erythroâ myeloid progenitorâ derived fetal monocytes give rise to adult tissueâ resident macrophages. Immunity. 2015; 42: 665 â 678.
dc.identifier.citedreferenceHashimoto D, Chow A, Noizat C, et al. Tissueâ resident macrophages selfâ maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013; 38: 792 â 804.
dc.identifier.citedreferenceWynn RM. Derivation and ultrastructure of the soâ called Hofbauer cell. Am J Obstet Gynecol. 1967; 97: 235 â 248.
dc.identifier.citedreferenceKim JS, Romero R, Kim MR, et al. Involvement of Hofbauer cells and maternal T cells in villitis of unknown aetiology. Histopathology. 2008; 52: 457 â 464.
dc.identifier.citedreferenceSimoni MK, Jurado KA, Abrahams VM, Fikrig E, Guller S. Zika virus infection of Hofbauer cells. Am J Reprod Immunol. 2017; 77: e12613.
dc.identifier.citedreferenceRomero R, Brody DT, Oyarzun E, et al. Infection and labor. III. Interleukinâ 1: a signal for the onset of parturition. Am J Obstet Gynecol. 1989; 160: 1117 â 1123.
dc.identifier.citedreferenceRomero R, Parvizi ST, Oyarzun E, et al. Amniotic fluid interleukinâ 1 in spontaneous labor at term. J Reprod Med. 1990; 35: 235 â 238.
dc.identifier.citedreferenceRomero R, Mazor M, Brandt F, et al. Interleukinâ 1 alpha and interleukinâ 1 beta in preterm and term human parturition. Am J Reprod Immunol. 1992; 27: 117 â 123.
dc.identifier.citedreferenceHillier SL, Witkin SS, Krohn MA, Watts DH, Kiviat NB, Eschenbach DA. The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Obstet Gynecol. 1993; 81: 941 â 948.
dc.identifier.citedreferenceGomez R, Ghezzi F, Romero R, Munoz H, Tolosa JE, Rojas I. Premature labor and intraâ amniotic infection. Clinical aspects and role of the cytokines in diagnosis and pathophysiology. Clin Perinatol. 1995; 22: 281 â 342.
dc.identifier.citedreferenceYoon BH, Romero R, Jun JK, et al. Amniotic fluid cytokines (interleukinâ 6, tumor necrosis factorâ alpha, interleukinâ 1 beta, and interleukinâ 8) and the risk for the development of bronchopulmonary dysplasia. Am J Obstet Gynecol. 1997; 177: 825 â 830.
dc.identifier.citedreferenceGonzalezâ Bosquet E, Cerqueira MJ, Dominguez C, Gasser I, Bermejo B, Cabero L. Amniotic fluid glucose and cytokines values in the early diagnosis of amniotic infection in patients with preterm labor and intact membranes. J Matern Fetal Med. 1999; 8: 155 â 158.
dc.identifier.citedreferenceFigueroa R, Garry D, Elimian A, Patel K, Sehgal PB, Tejani N. Evaluation of amniotic fluid cytokines in preterm labor and intact membranes. J Matern Fetal Neonatal Med. 2005; 18: 241 â 247.
dc.identifier.citedreferenceSadowsky DW, Adams KM, Gravett MG, Witkin SS, Novy MJ. Preterm labor is induced by intraamniotic infusions of interleukinâ 1beta and tumor necrosis factorâ alpha but not by interleukinâ 6 or interleukinâ 8 in a nonhuman primate model. Am J Obstet Gynecol. 2006; 195: 1578 â 1589.
dc.identifier.citedreferenceMarconi C, de Andrade Ramos BR, Peracoli JC, Donders GG, da Silva MG. Amniotic fluid interleukinâ 1 beta and interleukinâ 6, but not interleukinâ 8 correlate with microbial invasion of the amniotic cavity in preterm labor. Am J Reprod Immunol. 2011; 65: 549 â 556.
dc.identifier.citedreferenceSchmidt W. The amniotic fluid compartment: the fetal habitat. Adv Anat Embryol Cell Biol. 1992; 127: 1 â 100.
dc.identifier.citedreferenceDavis LE, McLaren LC, Stewart JA, James CG, Levine MD, Skipper BJ. Immunological and microbiological studies of midtrimester amniotic fluid. Gynecol Obstet Invest. 1983; 16: 261 â 268.
dc.identifier.citedreferenceCherry SH. Amniotic fluid analysis as an index of fetal health in utero. Med Times. 1967; 95: 713 â 717.
dc.identifier.citedreferenceBarham KA. Amnioscopy, meconium and fetal wellâ being. J Obstet Gynaecol Br Commonw. 1969; 76: 412 â 418.
dc.identifier.citedreferenceSchifrin BS, Guntes V, Gergely RC, Eden R, Roll K, Jacobs J. The role of realâ time scanning in antenatal fetal surveillance. Am J Obstet Gynecol. 1981; 140: 525 â 530.
dc.identifier.citedreferenceClark SL, Romero R, Dildy GA, et al. Proposed diagnostic criteria for the case definition of amniotic fluid embolism in research studies. Am J Obstet Gynecol. 2016; 215: 408 â 412.
dc.identifier.citedreferenceTarui T, Kim A, Flake A, et al. Amniotic fluid transcriptomics reflects novel disease mechanisms in fetuses with myelomeningocele. Am J Obstet Gynecol. 2017; 217: 587.e581 â 587.e587. e510
dc.identifier.citedreferenceHobbins JC, Brock W, Speroff L, Anderson GG, Caldwell B. Lâ S ratio in predicting pulmonary maturity in utero. Obstet Gynecol. 1972; 39: 660 â 664.
dc.identifier.citedreferenceGluck L. The evaluation of fetal lung maturity. Calif Med. 1972; 116: 58 â 59.
dc.identifier.citedreferenceWinn HN, Romero R, Roberts A, Liu H, Hobbins JC. Comparison of fetal lung maturation in preterm singleton and twin pregnancies. Am J Perinatol. 1992; 9: 326 â 328.
dc.identifier.citedreferencePalacio M, Bonetâ Carne E, Cobo T, et al. Fetal lung texture T: prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: a multicenter study. Am J Obstet Gynecol. 2017; 217: 196.e191 â 196.e196. e114.
dc.identifier.citedreferenceJacobson CB, Barter RH. Intrauterine diagnosis and management of genetic defects. Am J Obstet Gynecol. 1967; 99: 796 â 807.
dc.identifier.citedreferenceValenti C, Schutta EJ, Kehaty T. Cytogenetic diagnosis of Down’s syndrome in utero. JAMA. 1969; 207: 1513 â 1515.
dc.identifier.citedreferenceSantesson B, Akesson HO, Book JA, Brosset A. Karyotyping human amniticâ fluid cels. Lancet. 1969; 2: 1067 â 1068.
dc.identifier.citedreferenceLisgar F, Gertner M, Cherry S, Hsu LY, Hirschhorn K. Prenatal chromosome analysis. Nature. 1970; 225: 280 â 281.
dc.identifier.citedreferenceRomero R, Emamian M, Quintero R, Wan M, Hobbins JC, Mitchell MD. Amniotic fluid prostaglandin levels and intraâ amniotic infections. Lancet. 1986; 1: 1380.
dc.identifier.citedreferenceRomero R, Emamian M, Quintero R, et al. The value and limitations of the Gram stain examination in the diagnosis of intraamniotic infection. Am J Obstet Gynecol. 1988; 159: 114 â 119.
dc.identifier.citedreferenceRomero R, Emamian M, Quintero R, et al. Diagnosis of intraâ amniotic infection: the acridine orange stain. Am J Perinatol. 1989; 6: 41 â 45.
dc.identifier.citedreferenceAkinbi HT, Narendran V, Pass AK, Markart P, Hoath SB. Host defense proteins in vernix caseosa and amniotic fluid. Am J Obstet Gynecol. 2004; 191: 2090 â 2096.
dc.identifier.citedreferenceRomero R, Manogue KR, Mitchell MD, et al. Infection and labor. IV. Cachectinâ tumor necrosis factor in the amniotic fluid of women with intraamniotic infection and preterm labor. Am J Obstet Gynecol. 1989; 161: 336 â 341.
dc.identifier.citedreferenceRomero R, Sirtori M, Oyarzun E, et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol. 1989; 161: 817 â 824.
dc.identifier.citedreferenceRomero R, Avila C, Santhanam U, Sehgal PB. Amniotic fluid interleukin 6 in preterm labor. Association with infection. J Clin Invest. 1990; 85: 1392 â 1400.
dc.identifier.citedreferenceRomero R, Jimenez C, Lohda AK, et al. Amniotic fluid glucose concentration: a rapid and simple method for the detection of intraamniotic infection in preterm labor. Am J Obstet Gynecol. 1990; 163: 968 â 974.
dc.identifier.citedreferenceRomero R, Quintero R, Nores J, et al. Amniotic fluid white blood cell count: a rapid and simple test to diagnose microbial invasion of the amniotic cavity and predict preterm delivery. Am J Obstet Gynecol. 1991; 165: 821 â 830.
dc.identifier.citedreferenceBaumann P, Romero R, Berry S, et al. Evidence of participation of the soluble tumor necrosis factor receptor I in the host response to intrauterine infection in preterm labor. Am J Reprod Immunol. 1993; 30: 184 â 193.
dc.identifier.citedreferenceCherouny PH, Pankuch GA, Romero R, et al. Neutrophil attractant/activating peptideâ 1/interleukinâ 8: association with histologic chorioamnionitis, preterm delivery, and bioactive amniotic fluid leukoattractants. Am J Obstet Gynecol. 1993; 169: 1299 â 1303.
dc.identifier.citedreferenceRomero R, Yoon BH, Kenney JS, Gomez R, Allison AC, Sehgal PB. Amniotic fluid interleukinâ 6 determinations are of diagnostic and prognostic value in preterm labor. Am J Reprod Immunol. 1993; 30: 167 â 183.
dc.identifier.citedreferenceGomez R, Romero R, Galasso M, Behnke E, Insunza A, Cotton DB. The value of amniotic fluid interleukinâ 6, white blood cell count, and gram stain in the diagnosis of microbial invasion of the amniotic cavity in patients at term. Am J Reprod Immunol. 1994; 32: 200 â 210.
dc.identifier.citedreferenceHsu CD, Meaddough E, Aversa K, Copel JA. The role of amniotic fluid Lâ selectin, GROâ alpha, and interleukinâ 8 in the pathogenesis of intraamniotic infection. Am J Obstet Gynecol. 1998; 178: 428 â 432.
dc.identifier.citedreferenceHsu CD, Meaddough E, Aversa K, et al. Elevated amniotic fluid levels of leukemia inhibitory factor, interleukin 6, and interleukin 8 in intraâ amniotic infection. Am J Obstet Gynecol. 1998; 179: 1267 â 1270.
dc.identifier.citedreferenceMaymon E, Romero R, Pacora P, et al. Matrilysin (matrix metalloproteinase 7) in parturition, premature rupture of membranes, and intrauterine infection. Am J Obstet Gynecol. 2000; 182: 1545 â 1553.
dc.identifier.citedreferenceMaymon E, Romero R, Pacora P, et al. Evidence of in vivo differential bioavailability of the active forms of matrix metalloproteinases 9 and 2 in parturition, spontaneous rupture of membranes, and intraâ amniotic infection. Am J Obstet Gynecol. 2000; 183: 887 â 894.
dc.identifier.citedreferenceMaymon E, Romero R, Pacora P, et al. Human neutrophil collagenase (matrix metalloproteinase 8) in parturition, premature rupture of the membranes, and intrauterine infection. Am J Obstet Gynecol. 2000; 183: 94 â 99.
dc.identifier.citedreferencePacora P, Maymon E, Gervasi MT, et al. Lactoferrin in intrauterine infection, human parturition, and rupture of fetal membranes. Am J Obstet Gynecol. 2000; 183: 904 â 910.
dc.identifier.citedreferenceYoon BH, Romero R, Kim M, et al. Clinical implications of detection of Ureaplasma urealyticum in the amniotic cavity with the polymerase chain reaction. Am J Obstet Gynecol. 2000; 183: 1130 â 1137.
dc.identifier.citedreferenceHsu CD, Hong SF, Harirah H, Bahadoâ Singh R, Lu L. Amniotic fluid soluble fas levels in intraâ amniotic infection. Obstet Gynecol. 2000; 95: 667 â 670.
dc.identifier.citedreferenceHsu CD, Aversa K, Meaddough E. The role of amniotic fluid interleukinâ 6, and cell adhesion molecules, intercellular adhesion moleculeâ 1 and leukocyte adhesion moleculeâ 1, in intraâ amniotic infection. Am J Reprod Immunol. 2000; 43: 251 â 254.
dc.identifier.citedreferenceMaymon E, Romero R, Chaiworapongsa T, et al. Amniotic fluid matrix metalloproteinaseâ 8 in preterm labor with intact membranes. Am J Obstet Gynecol. 2001; 185: 1149 â 1155.
dc.identifier.citedreferenceYoon BH, Oh SY, Romero R, et al. An elevated amniotic fluid matrix metalloproteinaseâ 8 level at the time of midâ trimester genetic amniocentesis is a risk factor for spontaneous preterm delivery. Am J Obstet Gynecol. 2001; 185: 1162 â 1167.
dc.identifier.citedreferenceYoon BH, Romero R, Moon JB, et al. Clinical significance of intraâ amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2001; 185: 1130 â 1136.
dc.identifier.citedreferenceKeelan JA, Yang J, Romero RJ, et al. Epithelial cellâ derived neutrophilâ activating peptideâ 78 is present in fetal membranes and amniotic fluid at increased concentrations with intraâ amniotic infection and preterm delivery. Biol Reprod. 2004; 70: 253 â 259.
dc.identifier.citedreferenceEspinoza J, Goncalves LF, Romero R, et al. The prevalence and clinical significance of amniotic fluid â sludgeâ in patients with preterm labor and intact membranes. Ultrasound Obstet Gynecol. 2005; 25: 346 â 352.
dc.identifier.citedreferenceKusanovic JP, Espinoza J, Romero R, et al. Clinical significance of the presence of amniotic fluid â sludgeâ in asymptomatic patients at high risk for spontaneous preterm delivery. Ultrasound Obstet Gynecol. 2007; 30: 706 â 714.
dc.identifier.citedreferenceLee SE, Romero R, Jung H, Park CW, Park JS, Yoon BH. The intensity of the fetal inflammatory response in intraamniotic inflammation with and without microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 2007; 197: 294.e291 â 294.e296.
dc.identifier.citedreferenceRomero R, Espinoza J, Hassan S, et al. Soluble receptor for advanced glycation end products (sRAGE) and endogenous secretory RAGE (esRAGE) in amniotic fluid: modulation by infection and inflammation. J Perinat Med. 2008; 36: 388 â 398.
dc.identifier.citedreferenceRomero R, Espinoza J, Rogers WT, et al. Proteomic analysis of amniotic fluid to identify women with preterm labor and intraâ amniotic inflammation/infection: the use of a novel computational method to analyze mass spectrometric profiling. J Matern Fetal Neonatal Med. 2008; 21: 367 â 388.
dc.identifier.citedreferenceRomero R, Schaudinn C, Kusanovic JP, et al. Detection of a microbial biofilm in intraamniotic infection. Am J Obstet Gynecol. 2008; 198: 135.e131 â 135.e135.
dc.identifier.citedreferenceRomero R, Chaiworapongsa T, Alpay Savasan Z, et al. Damageâ associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. J Matern Fetal Neonatal Med. 2011; 24: 1444 â 1455.
dc.identifier.citedreferenceGervasi MT, Romero R, Bracalente G, et al. Midtrimester amniotic fluid concentrations of interleukinâ 6 and interferonâ gammaâ inducible proteinâ 10: evidence for heterogeneity of intraâ amniotic inflammation and associations with spontaneous early (<32 weeks) and late (>32 weeks) preterm delivery. J Perinat Med. 2012; 40: 329 â 343.
dc.identifier.citedreferenceGervasi MT, Romero R, Bracalente G, et al. Viral invasion of the amniotic cavity (VIAC) in the midtrimester of pregnancy. J Matern Fetal Neonatal Med. 2012; 25: 2002 â 2013.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intraâ amniotic infection in preterm labor with intact membranes. Am J Reprod Immunol. 2014; 71: 330 â 358.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. Sterile intraâ amniotic inflammation in asymptomatic patients with a sonographic short cervix: prevalence and clinical significance. J Matern Fetal Neonatal Med. 2014; 28: 1 â 17.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. Prevalence and clinical significance of sterile intraâ amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014; 72: 458 â 474.
dc.identifier.citedreferenceRomero R, Miranda J, Chaemsaithong P, et al. Sterile and microbialâ associated intraâ amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015; 28: 1394 â 1409.
dc.identifier.citedreferenceRomero R, Miranda J, Kusanovic JP, et al. Clinical chorioamnionitis at term I: microbiology of the amniotic cavity using cultivation and molecular techniques. J Perinat Med. 2015; 43: 19 â 36.
dc.identifier.citedreferenceChaemsaithong P, Romero R, Korzeniewski SJ, et al. A point of care test for interleukinâ 6 in amniotic fluid in preterm prelabor rupture of membranes: a step toward the early treatment of acute intraâ amniotic inflammation/infection. J Matern Fetal Neonatal Med. 2016; 29: 360 â 367.
dc.identifier.citedreferenceChaemsaithong P, Romero R, Korzeniewski SJ, et al. A rapid interleukinâ 6 bedside test for the identification of intraâ amniotic inflammation in preterm labor with intact membranes. J Matern Fetal Neonatal Med. 2016; 29: 349 â 359.
dc.identifier.citedreferenceRomero R, Chaemsaithong P, Korzeniewski SJ, et al. Clinical chorioamnionitis at term III: how well do clinical criteria perform in the identification of proven intraâ amniotic infection? J Perinat Med. 2016; 44: 23 â 32.
dc.identifier.citedreferenceRomero R, Chaemsaithong P, Korzeniewski SJ, et al. Clinical chorioamnionitis at term II: the intraâ amniotic inflammatory response. J Perinat Med. 2016; 44: 5 â 22.
dc.identifier.citedreferenceYoneda N, Yoneda S, Niimi H, et al. Polymicrobial Amniotic Fluid Infection with Mycoplasma/Ureaplasma and Other Bacteria Induces Severe Intraâ Amniotic Inflammation Associated with Poor Perinatal Prognosis in Preterm Labor. Am J Reprod Immunol. 2016; 75: 112 â 125.
dc.identifier.citedreferenceKim SM, Romero R, Lee J, Chaemsaithong P, Docheva N, Yoon BH. Gastric fluid versus amniotic fluid analysis for the identification of intraâ amniotic infection due to Ureaplasma species. J Matern Fetal Neonatal Med. 2016; 29: 2579 â 2587.
dc.identifier.citedreferenceSon GH, You YA, Kwon EJ, Lee KY, Kim YJ. Comparative Analysis of Midtrimester Amniotic Fluid Cytokine Levels to Predict Spontaneous Very Preâ term Birth in Patients with Cervical Insufficiency. Am J Reprod Immunol. 2016; 75: 155 â 161.
dc.identifier.citedreferenceMaddipati KR, Romero R, Chaiworapongsa T, et al. Lipidomic analysis of patients with microbial invasion of the amniotic cavity reveals upâ regulation of leukotriene B4. FASEB J. 2016; 30: 3296 â 3307.
dc.identifier.citedreferenceYoneda S, Shiozaki A, Yoneda N, et al. Antibiotic Therapy Increases the Risk of Preterm Birth in Preterm Labor without Intraâ Amniotic Microbes, but may Prolong the Gestation Period in Preterm Labor with Microbes, Evaluated by Rapid and Highâ Sensitive PCR System. Am J Reprod Immunol. 2016; 75: 440 â 450.
dc.identifier.citedreferencePark JY, Romero R, Lee J, Chaemsaithong P, Chaiyasit N, Yoon BH. An elevated amniotic fluid prostaglandin F2alpha concentration is associated with intraâ amniotic inflammation/infection, and clinical and histologic chorioamnionitis, as well as impending preterm delivery in patients with preterm labor and intact membranes. J Matern Fetal Neonatal Med. 2016; 29: 2563 â 2572.
dc.identifier.citedreferenceRomero R, Chaemsaithong P, Chaiyasit N, et al. CXCL10 and ILâ 6: Markers of two different forms of intraâ amniotic inflammation in preterm labor. Am J Reprod Immunol. 2017; 78: e12685.
dc.identifier.citedreferenceChaiyasit N, Romero R, Chaemsaithong P, et al. Clinical chorioamnionitis at term VIII: a rapid MMPâ 8 test for the identification of intraâ amniotic inflammation. J Perinat Med. 2017; 45: 539 â 550.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. Are amniotic fluid neutrophils in women with intraamniotic infection and/or inflammation of fetal or maternal origin? Am J Obstet Gynecol. 2017; 217: 693.e691 â 693.e693. e616.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. Neutrophil Extracellular Traps in the Amniotic Cavity of Women with Intraâ Amniotic Infection: A New Mechanism of Host Defense. Reprod Sci. 2017; 24: 1139 â 1153.
dc.identifier.citedreferenceMartinezâ Varea A, Romero R, Xu Y, et al. Clinical chorioamnionitis at term VII: the amniotic fluid cellular immune response. J Perinat Med. 2017; 45: 523 â 538.
dc.identifier.citedreferenceMaymon E, Romero R, Bhatti G, et al. Chronic inflammatory lesions of the placenta are associated with an upâ regulation of amniotic fluid CXCR3: A marker of allograft rejection. J Perinat Med. 2017; 46: 123 â 137.
dc.identifier.citedreferenceMusilova I, Andrys C, Krejsek J, et al. Amniotic fluid pentraxins: Potential early markers for identifying intraâ amniotic inflammatory complications in preterm preâ labor rupture of membranes. Am J Reprod Immunol. 2017; e12789.
dc.identifier.citedreferenceOh KJ, Kim SM, Hong JS, et al. Twentyâ four percent of patients with clinical chorioamnionitis in preterm gestations have no evidence of either cultureâ proven intraamniotic infection or intraamniotic inflammation. Am J Obstet Gynecol. 2017; 216: 604.e601 â 604.e611.
dc.identifier.citedreferenceTarca AL, Fitzgerald W, Chaemsaithong P, et al. The cytokine network in women with an asymptomatic short cervix and the risk of preterm delivery. Am J Reprod Immunol. 2017; 78: e12686.
dc.identifier.citedreferenceRowlands S, Danielewski JA, Tabrizi SN, Walker SP, Garland SM. Microbial invasion of the amniotic cavity in midtrimester pregnancies using molecular microbiology. Am J Obstet Gynecol. 2017; 217: 71.e1 â 71.e5.
dc.identifier.citedreferenceTong XL, Wang L, Gao TB, Qin YG, Qi YQ, Xu YP. Potential function of amniotic fluid in fetal developmentâ novel insights by comparing the composition of human amniotic fluid with umbilical cord and maternal serum at mid and late gestation. J Chin Med Assoc. 2009; 72: 368 â 373.
dc.identifier.citedreferenceBrace RA. Progress toward understanding the regulation of amniotic fluid volume: water and solute fluxes in and through the fetal membranes. Placenta. 1995; 16: 1 â 18.
dc.identifier.citedreferenceUnderwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol. 2005; 25: 341 â 348.
dc.identifier.citedreferenceWallenburg HC. The amniotic fluid I. Water and electrolyte homeostasis. J Perinat Med. 1977; 5: 193 â 205.
dc.identifier.citedreferenceBrace RA. Physiology of amniotic fluid volume regulation. Clin Obstet Gynecol. 1997; 40: 280 â 289.
dc.identifier.citedreferenceRoss MG, Brace RA. National Institute of Child H, Development Workshop P: National Institute of Child Health and Development Conference summary: amniotic fluid biologyâ basic and clinical aspects. J Matern Fetal Med. 2001; 10: 2 â 19.
dc.identifier.citedreferenceSozanskii AM. The biochemical composition of amniotic fluid and of maternal and fetal blood at various periods of pregnancy. Biull Eksp Biol Med. 1961; 51: 323 â 326.
dc.identifier.citedreferenceRueda R, Vargas ML, Garciaâ Pacheco M, Garciaâ Olivares E. Detection of immunoregulatory lipidâ like factors in human amniotic fluid. Am J Reprod Immunol. 1990; 24: 40 â 44.
dc.identifier.citedreferenceCampbell J, Wathen N, Macintosh M, Cass P, Chard T, Mainwaring Burton R. Biochemical composition of amniotic fluid and extraembryonic coelomic fluid in the first trimester of pregnancy. Br J Obstet Gynaecol. 1992; 99: 563 â 565.
dc.identifier.citedreferenceRomero R, Baumann P, Gonzalez R, et al. Amniotic fluid prostanoid concentrations increase early during the course of spontaneous labor at term. Am J Obstet Gynecol. 1994; 171: 1613 â 1620.
dc.identifier.citedreferenceRomero R, Munoz H, Gomez R, et al. Increase in prostaglandin bioavailability precedes the onset of human parturition. Prostaglandins Leukot Essent Fatty Acids. 1996; 54: 187 â 191.
dc.identifier.citedreferenceEdwin SS, Romero RJ, Munoz H, Branch DW, Mitchell MD. 5â Hydroxyeicosatetraenoic acid and human parturition. Prostaglandins. 1996; 51: 403 â 412.
dc.identifier.citedreferencePetraglia F, Gomez R, Luisi S, et al. Increased midtrimester amniotic fluid activin A: a risk factor for subsequent fetal death. Am J Obstet Gynecol. 1999; 180: 194 â 197.
dc.identifier.citedreferenceDrohse H, Christensen H, Myrhoj V, Sorensen S. Characterisation of nonâ maternal serum proteins in amniotic fluid at weeks 16 to 18 of gestation. Clin Chim Acta. 1998; 276: 109 â 120.
dc.identifier.citedreferenceYoshio H, Tollin M, Gudmundsson GH, et al. Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications for newborn innate defense. Pediatr Res. 2003; 53: 211 â 216.
dc.identifier.citedreferenceEspinoza J, Chaiworapongsa T, Romero R, et al. Antimicrobial peptides in amniotic fluid: defensins, calprotectin and bacterial/permeabilityâ increasing protein in patients with microbial invasion of the amniotic cavity, intraâ amniotic inflammation, preterm labor and premature rupture of membranes. J Matern Fetal Neonatal Med. 2003; 13: 2 â 21.
dc.identifier.citedreferenceCho CK, Shan SJ, Winsor EJ, Diamandis EP. Proteomics analysis of human amniotic fluid. Mol Cell Proteomics. 2007; 6: 1406 â 1415.
dc.identifier.citedreferenceBujold E, Romero R, Kusanovic JP, et al. Proteomic profiling of amniotic fluid in preterm labor using twoâ dimensional liquid separation and mass spectrometry. J Matern Fetal Neonatal Med. 2008; 21: 697 â 713.
dc.identifier.citedreferenceLee SE, Romero R, Park IS, Seong HS, Park CW, Yoon BH. Amniotic fluid prostaglandin concentrations increase before the onset of spontaneous labor at term. J Matern Fetal Neonatal Med. 2008; 21: 89 â 94.
dc.identifier.citedreferencePerluigi M, Di Domenico F, Cini C, et al. Proteomic analysis for the study of amniotic fluid protein composition. J Prenat Med. 2009; 3: 39 â 41.
dc.identifier.citedreferenceRomero R, Mazakiâ Tovi S, Vaisbuch E, et al. Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery. J Matern Fetal Neonatal Med. 2010; 23: 1344 â 1359.
dc.identifier.citedreferenceWitkin SS, Chervenak J, Bongiovanni AM, Herway C, Linhares IM, Skupski D. Influence of midâ trimester amniotic fluid on endogenous and lipopolysaccharideâ mediated responses of mononuclear lymphoid cells. Am J Reprod Immunol. 2012; 67: 28 â 33.
dc.identifier.citedreferenceMaddipati KR, Romero R, Chaiworapongsa T, et al. Eicosanomic profiling reveals dominance of the epoxygenase pathway in human amniotic fluid at term in spontaneous labor. FASEB J. 2014; 28: 4835 â 4846.
dc.identifier.citedreferenceMaddipati KR, Romero R, Chaiworapongsa T, et al. Clinical chorioamnionitis at term: the amniotic fluid fatty acyl lipidome. J Lipid Res. 2016; 57: 1906 â 1916.
dc.identifier.citedreferenceGalask RP, Snyder IS. Antimicrobial factors in amniotic fluid. Am J Obstet Gynecol. 1970; 106: 59 â 65.
dc.identifier.citedreferenceLarsen B, Snyder IS, Galask RP. Bacterial growth inhibition by amniotic fluid. I. In vitro evidence for bacterial growthâ inhibiting activity. Am J Obstet Gynecol. 1974; 119: 492 â 496.
dc.identifier.citedreferenceSchlievert P, Johnson W, Galask RP. Isolation of a lowâ molecularâ weight antibacterial system from human amniotic fluid. Infect Immun. 1976; 14: 1156 â 1166.
dc.identifier.citedreferenceSchlievert P, Johnson W, Galask RP. Amniotic fluid antibacterial mechanisms: newer concepts. Semin Perinatol. 1977; 1: 59 â 70.
dc.identifier.citedreferenceTafari N, Ross SM, Naeye RL, Galask RP, Zaar B. Failure of bacterial growth inhibition by amniotic fluid. Am J Obstet Gynecol. 1977; 128: 187 â 189.
dc.identifier.citedreferenceNiemela A, Kulomaa M, Vija P, Tuohimaa P, Saarikoski S. Lactoferrin in human amniotic fluid. Hum Reprod. 1989; 4: 99 â 101.
dc.identifier.citedreferencePierce J, Jacobson P, Benedetti E, et al. Collection and characterization of amniotic fluid from scheduled Câ section deliveries. Cell Tissue Bank. 2016; 17: 413 â 425.
dc.identifier.citedreferenceVotta RA, de Gagneten CB, Parada O, Giulietti M. Cytologic study of amniotic fluid in pregnancy. Am J Obstet Gynecol. 1968; 102: 571 â 577.
dc.identifier.citedreferenceWachtel E, Gordon H, Olsen E. Cytology of amniotic fluid. J Obstet Gynaecol Br Commonw. 1969; 76: 596 â 602.
dc.identifier.citedreferencePasquinucci C, Dambrosio F, Meroni P, Della Torre L. The amniotic fluid. 3. A morphologic study of cytology. Ann Ostet Ginecol Med Perinat. 1969; 91: 90 â 106.
dc.identifier.citedreferenceCasadei R, D’Ablaing III G, Kaplan BJ, Schwinn CP. A cytologic study of amniotic fluid. Acta Cytol. 1973; 17: 289 â 298.
dc.identifier.citedreferenceCutz E, Conen PE. Macrophages and epithelial cells in human amniotic fluid: transmission and scanning electron microscopic study. Am J Anat. 1978; 151: 87 â 101.
dc.identifier.citedreferenceSchrage R, Bogelspacher HR, Wurster KG. Amniotic fluid cells in the second trimester of pregnancy. Acta Cytol. 1982; 26: 407 â 416.
dc.identifier.citedreferenceGosden CM. Amniotic fluid cell types and culture. Br Med Bull. 1983; 39: 348 â 354.
dc.identifier.citedreferenceFauza D. Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol. 2004; 18: 877 â 891.
dc.identifier.citedreferenceLynch W, Rezai S, Henderson CE. Human amniotic fluid: a source of stem cells for possible therapeutic use. Am J Obstet Gynecol. 2016; 215: 401.
dc.identifier.citedreferenceHoyes AD. Ultrastructure of the cells of the amniotic fluid. J Obstet Gynaecol Br Commonw. 1968; 75: 164 â 171.
dc.identifier.citedreferenceSutherland GR, Bauld R, Bain AD. Observations on human amniotic fluid cell strains in serial culture. J Med Genet. 1974; 11: 190 â 195.
dc.identifier.citedreferenceMedinaâ Gomez P, McBride WH. Amniotic fluid macrophages from normal and malformed fetuses. Prenat Diagn. 1986; 6: 195 â 205.
dc.identifier.citedreferenceMarquardt N, Ivarsson MA, Sundstrom E, et al. Fetal CD103 +  ILâ 17â Producing Group 3 Innate Lymphoid Cells Represent the Dominant Lymphocyte Subset in Human Amniotic Fluid. J Immunol. 2016; 197: 3069 â 3075.
dc.identifier.citedreferenceSutherland GR, Brock DJ, Scrimgeour JB. Letter: Amnioticâ fluid macrophages and anencephaly. Lancet. 1973; 2: 1098 â 1099.
dc.identifier.citedreferenceSutherland GR, Brock DJ, Scrimgeour JB. Amniotic fluid macrophages and the antenatal diagnosis of anencephaly and spina bifida. J Med Genet. 1975; 12: 135 â 137.
dc.identifier.citedreferenceGosden C, Brock DJ. Combined use of alphafetoprotein and amniotic fluid cell morphology in early prenatal diagnosis of fetal abnormalities. J Med Genet. 1978; 15: 262 â 270.
dc.identifier.citedreferencePapp Z, Bell JE. Uncultured cells in amniotic fluid from normal and abnormal foetuses. Clin Genet. 1979; 16: 282 â 290.
dc.identifier.citedreferenceChapman PA, Blenkinsopp WK, Lewis BV. The detection of neural tube closure defects by exfoliative cytology of amniotic fluid. Acta Cytol. 1981; 25: 367 â 372.
dc.identifier.citedreferenceChapman PA. Cytology as a means of detecting neural tube defects. Med Lab Sci. 1982; 39: 215 â 222.
dc.identifier.citedreferenceMorrison JJ, Klein N, Chitty LS, et al. Intraâ amniotic inflammation in human gastroschisis: possible aetiology of postnatal bowel dysfunction. Br J Obstet Gynaecol. 1998; 105: 1200 â 1204.
dc.identifier.citedreferenceGuibourdenche J, Berrebi D, Vuillard E, et al. Biochemical investigations of bowel inflammation in gastroschisis. Pediatr Res. 2006; 60: 565 â 568.
dc.identifier.citedreferenceFrascoli M, Jeanty C, Fleck S, et al. Heightened Immune Activation in Fetuses with Gastroschisis May Be Blocked by Targeting ILâ 5. J Immunol. 2016; 196: 4957 â 4966.
dc.identifier.citedreferenceRomero R, Yoon BH, Mazor M, et al. The diagnostic and prognostic value of amniotic fluid white blood cell count, glucose, interleukinâ 6, and gram stain in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 1993; 169: 805 â 816.
dc.identifier.citedreferenceRomero R, Yoon BH, Mazor M, et al. A comparative study of the diagnostic performance of amniotic fluid glucose, white blood cell count, interleukinâ 6, and gram stain in the detection of microbial invasion in patients with preterm premature rupture of membranes. Am J Obstet Gynecol. 1993; 169: 839 â 851.
dc.identifier.citedreferenceYoon BH, Yang SH, Jun JK, Park KH, Kim CJ, Romero R. Maternal blood Câ reactive protein, white blood cell count, and temperature in preterm labor: a comparison with amniotic fluid white blood cell count. Obstet Gynecol. 1996; 87: 231 â 237.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Garciaâ Flores V, et al. Amniotic fluid neutrophils can phagocytize bacteria: A mechanism for microbial killing in the amniotic cavity. Am J Reprod Immunol. 2017; 78: e12723.
dc.identifier.citedreferenceMjosberg JM, Trifari S, Crellin NK, et al. Human ILâ 25â and ILâ 33â responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011; 12: 1055 â 1062.
dc.identifier.citedreferenceForsberg A, Bengtsson M, Eringfalt A, Ernerudh J, Mjosberg J, Jenmalm MC. GATA binding protein 3(+) group 2 innate lymphoid cells are present in cord blood and in higher proportions in male than in female neonates. J Allergy Clin Immunol. 2014; 134: 228 â 230.
dc.identifier.citedreferenceMebius RE, Miyamoto T, Christensen J, et al. The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45 + CD4 + CD3â cells, as well as macrophages. J Immunol. 2001; 166: 6593 â 6601.
dc.identifier.citedreferenceSawa S, Cherrier M, Lochner M, et al. Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science. 2010; 330: 665 â 669.
dc.identifier.citedreferencePossot C, Schmutz S, Chea S, et al. Notch signaling is necessary for adult, but not fetal, development of RORgammat(+) innate lymphoid cells. Nat Immunol. 2011; 12: 949 â 958.
dc.identifier.citedreferenceBando JK, Liang HE, Locksley RM. Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat Immunol. 2015; 16: 153 â 160.
dc.identifier.citedreferenceKlose CS, Kiss EA, Schwierzeck V, et al. A Tâ bet gradient controls the fate and function of CCR6â RORgammat+ innate lymphoid cells. Nature. 2013; 494: 261 â 265.
dc.identifier.citedreferenceHaynes BF, Heinly CS. Early human T cell development: analysis of the human thymus at the time of initial entry of hematopoietic stem cells into the fetal thymic microenvironment. J Exp Med. 1995; 181: 1445 â 1458.
dc.identifier.citedreferenceSpencer J, MacDonald TT, Finn T, Isaacson PG. The development of gut associated lymphoid tissue in the terminal ileum of fetal human intestine. Clin Exp Immunol. 1986; 64: 536 â 543.
dc.identifier.citedreferenceCupedo T, Nagasawa M, Weijer K, Blom B, Spits H. Development and activation of regulatory T cells in the human fetus. Eur J Immunol. 2005; 35: 383 â 390.
dc.identifier.citedreferenceMichaelsson J, Mold JE, McCune JM, Nixon DF. Regulation of T cell responses in the developing human fetus. J Immunol. 2006; 176: 5741 â 5748.
dc.identifier.citedreferenceMold JE, Michaelsson J, Burt TD, et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science. 2008; 322: 1562 â 1565.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.