Show simple item record

Mechanisms of red blood cell transfusion‐related immunomodulation

dc.contributor.authorRemy, Kenneth E.
dc.contributor.authorHall, Mark W.
dc.contributor.authorCholette, Jill
dc.contributor.authorJuffermans, Nicole P.
dc.contributor.authorNicol, Kathleen
dc.contributor.authorDoctor, Allan
dc.contributor.authorBlumberg, Neil
dc.contributor.authorSpinella, Philip C.
dc.contributor.authorNorris, Philip J.
dc.contributor.authorDahmer, Mary K.
dc.contributor.authorMuszynski, Jennifer A.
dc.date.accessioned2018-04-04T18:49:28Z
dc.date.available2019-05-13T14:45:25Zen
dc.date.issued2018-03
dc.identifier.citationRemy, Kenneth E.; Hall, Mark W.; Cholette, Jill; Juffermans, Nicole P.; Nicol, Kathleen; Doctor, Allan; Blumberg, Neil; Spinella, Philip C.; Norris, Philip J.; Dahmer, Mary K.; Muszynski, Jennifer A. (2018). "Mechanisms of red blood cell transfusion‐related immunomodulation." Transfusion 58(3): 804-815.
dc.identifier.issn0041-1132
dc.identifier.issn1537-2995
dc.identifier.urihttps://hdl.handle.net/2027.42/142911
dc.publisherWiley Periodicals, Inc.
dc.publisherThe New York Times
dc.titleMechanisms of red blood cell transfusion‐related immunomodulation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142911/1/trf14488_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142911/2/trf14488.pdf
dc.identifier.doi10.1111/trf.14488
dc.identifier.sourceTransfusion
dc.identifier.citedreferenceKeating FK, Butenas S, Fung MK, et al. Platelet‐white blood cell (WBC) interaction, WBC apoptosis, and procoagulant activity in stored red blood cells. Transfusion 2011; 51: 1086 ‐ 95.
dc.identifier.citedreferenceCocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol 2009; 19: 43 ‐ 51.
dc.identifier.citedreferenceSadallah S, Eken C, Martin PJ, et al. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J Immunol 2011; 186: 6543 ‐ 52.
dc.identifier.citedreferenceVasina EM, Cauwenberghs S, Feijge MA, et al. Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death Dis 2011; 2: e211.
dc.identifier.citedreferenceGasser O, Schifferli JA. Activated polymorphonuclear neutrophils disseminate anti‐inflammatory microparticles by ectocytosis. Blood 2004; 104: 2543 ‐ 8.
dc.identifier.citedreferenceRen Y, Yang J, Xie R, et al. Exosomal‐like vesicles with immune‐modulatory features are present in human plasma and can induce CD4+ T‐cell apoptosis in vitro. Transfusion 2011; 51: 1002 ‐ 11.
dc.identifier.citedreferenceLai CP, Mardini O, Ericsson M, et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 2014; 8: 483 ‐ 94.
dc.identifier.citedreferenceThéry C, Duban L, Segura E, et al. Indirect activation of naive CD4+ T cells by dendritic cell‐derived exosomes. Nat Immunol 2002; 3: 1156 ‐ 62.
dc.identifier.citedreferenceQazi KR, Gehrmann U, Domange Jordö E, et al. Antigen‐loaded exosomes alone induce Th1‐type memory through a B‐cell‐dependent mechanism. Blood 2009; 113: 2673 ‐ 83.
dc.identifier.citedreferenceKim OY, Hong BS, Park KS, et al. Immunization with Escherichia coli outer membrane vesicles protects bacteria‐induced lethality via Th1 and Th17 cell responses. J Immunol 2013; 190: 4092 ‐ 102.
dc.identifier.citedreferenceLee WH, Choi HI, Hong SW, et al. Vaccination with Klebsiella pneumoniae‐derived extracellular vesicles protects against bacteria‐induced lethality via both humoral and cellular immunity. Exp Mol Med 2015; 47: e183.
dc.identifier.citedreferenceAssinger A. Platelets and infection—an emerging role of platelets in viral infection. Front Immunol 2014; 5: 649.
dc.identifier.citedreferenceLacroix J, Hébert PC, Fergusson DA, et al. Age of transfused blood in critically ill adults. N Engl J Med 2015; 372: 1410 ‐ 8.
dc.identifier.citedreferenceFergusson DA, Hébert P, Hogan DL, et al. Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low‐birth‐weight infants: the ARIPI randomized trial. JAMA 2012; 308: 1443 ‐ 51.
dc.identifier.citedreferenceRamirez‐Arcos S, Marks DC, Acker JP, et al. Quality and safety of blood products. J Blood Transfus 2016; 2016: 2482157
dc.identifier.citedreferenceChassé M, Tinmouth A, English SW, et al. Association of blood donor age and sex with recipient survival after red blood cell transfusion. JAMA Intern Med 2016; 176: 1307 ‐ 14.
dc.identifier.citedreferenceAlmizraq RJ, Yi QL, Acker JP, et al. Impact of technical and assay variation on reporting of hemolysis in stored red blood cell products. Clin Chim Acta 2017; 468: 90 ‐ 7.
dc.identifier.citedreferenceAcker JP, Marks DC, Sheffield WP. Quality assessment of established and emerging blood components for transfusion. J Blood Transfus 2016; 2016: 4860284
dc.identifier.citedreferenceHall MW, Geyer SM, Guo CY, et al. Innate immune function and mortality in critically ill children with influenza: a multicenter study. Crit Care Med 2013; 41: 224 ‐ 36.
dc.identifier.citedreferenceMuszynski JA, Nofziger R, Greathouse K, et al. Innate immune function predicts the development of nosocomial infection in critically injured children. Shock 2014; 42: 313 ‐ 21.
dc.identifier.citedreferenceHall MW, Knatz NL, Vetterly C, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med 2011; 37: 525 ‐ 32.
dc.identifier.citedreferenceWong HR, Cvijanovich N, Wheeler DS, et al. Interleukin‐8 as a stratification tool for interventional trials involving pediatric septic shock. Am J Respir Crit Care Med 2008; 178: 276 ‐ 82.
dc.identifier.citedreferenceBoomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011; 306: 2594 ‐ 605.
dc.identifier.citedreferenceMuszynski JA, Nofziger R, Greathouse K, et al. Early adaptive immune suppression in children with septic shock: a prospective observational study. Crit Care 2014; 18: R145.
dc.identifier.citedreferenceEngele LJ, Straat M, van Rooijen IH, et al. Transfusion of platelets, but not of red blood cells, is independently associated with nosocomial infections in the critically ill. Ann Intensive Care 2016; 6: 67.
dc.identifier.citedreferenceRaposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen‐presenting vesicles. J Exp Med 1996; 183: 1161 ‐ 72.
dc.identifier.citedreferenceLacroix J, Hébert PC, Hutchison JS, et al. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med 2007; 356: 1609 ‐ 19.
dc.identifier.citedreferenceWald ML. Blood industry shrinks as transfusions decline. The New York Times; 2014: A1.
dc.identifier.citedreferenceHébert PC. Transfusion requirements in critical care (TRICC): a multicentre, randomized, controlled clinical study. Transfusion Requirements in Critical Care Investigators and the Canadian Critical Care Trials Group. Br J Anaesth 1998; 81Suppl1: 25 ‐ 33.
dc.identifier.citedreferenceFlegel WA, Natanson C, Klein HG. Does prolonged storage of red blood cells cause harm? Br J Haematol 2014; 165: 3 ‐ 16.
dc.identifier.citedreferenceWhitaker BI, Hinkins S. The 2011 National Blood Collection and Utilization Survey Report. Washington (DC): US Department of Health and Human Services; 2011.
dc.identifier.citedreferenceArmano R, Gauvin F, Ducruet T, et al. Determinants of red blood cell transfusions in a pediatric critical care unit: a prospective, descriptive epidemiological study. Crit Care Med 2005; 33: 2637 ‐ 44.
dc.identifier.citedreferenceBateman ST, Lacroix J, Boven K, et al. Anemia, blood loss, and blood transfusions in North American children in the intensive care unit. Am J Respir Crit Care Med 2008; 178: 26 ‐ 33.
dc.identifier.citedreferenceDemaret P, Tucci M, Ducruet T, et al. Red blood cell transfusion in critically ill children (CME). Transfusion 2014; 54: 365 ‐ 75.
dc.identifier.citedreferenceLacroix J, Tucci M, Du Pont‐Thibodeau G. Red blood cell transfusion decision making in critically ill children. Curr Opin Pediatr 2015; 27: 286 ‐ 91.
dc.identifier.citedreferenceCorwin HL. Anemia and red blood cell transfusion in the critically ill. Semin Dial 2006; 19: 513 ‐ 6.
dc.identifier.citedreferenceCorwin HL, Gettinger A, Pearl RG, et al. The CRIT study: anemia and blood transfusion in the critically ill—current clinical practice in the United States. Crit Care Med 2004; 32: 39 ‐ 52.
dc.identifier.citedreferenceHébert PC, Tinmouth A, Corwin H. Anemia and red cell transfusion in critically ill patients. Crit Care Med 2003; 31: S672 ‐ 7.
dc.identifier.citedreferenceVamvakas EC, Blajchman MA. Deleterious clinical effects of transfusion‐associated immunomodulation: fact or fiction? Blood 2001; 97: 1180 ‐ 95.
dc.identifier.citedreferenceMuszynski JA, Spinella PC, Cholette JM, et al. Transfusion‐related immunomodulation: review of the literature and implications for pediatric critical illness. Transfusion 2017; 57: 195 ‐ 206.
dc.identifier.citedreferenceRohde JM, Dimcheff DE, Blumberg N, et al. Health care‐associated infection after red blood cell transfusion: a systematic review and meta‐analysis. JAMA 2014; 311: 1317 ‐ 26.
dc.identifier.citedreferenceWang D, Sun J, Solomon SB, et al. Transfusion of older stored blood and risk of death: a meta‐analysis. Transfusion 2012; 52: 1184 ‐ 95.
dc.identifier.citedreferenceBilgin YM, Brand A. Transfusion‐related immunomodulation: a second hit in an inflammatory cascade? Vox Sang 2008; 95: 261 ‐ 71.
dc.identifier.citedreferenceOzment CP, Mamo LB, Campbell ML, et al. Transfusion‐related biologic effects and free hemoglobin, heme, and iron. Transfusion 2013; 53: 732 ‐ 40.
dc.identifier.citedreferenceSparrow RL. Red blood cell storage and transfusion‐related immunomodulation. Blood Transfus 2010; 8Suppl3: s26 ‐ 30.
dc.identifier.citedreferenceNeal MD, Raval JS, Triulzi DJ, et al. Innate immune activation after transfusion of stored red blood cells. Transfus Med Rev 2013; 27: 113 ‐ 8.
dc.identifier.citedreferenceVamvakas EC, Blajchman MA. Transfusion‐related immunomodulation (TRIM): an update. Blood Rev 2007; 21: 327 ‐ 48.
dc.identifier.citedreferenceHod EA, Spitalnik SL. Stored red blood cell transfusions: iron, inflammation, immunity, and infection. Transfus Clin Biol 2012; 19: 84 ‐ 9.
dc.identifier.citedreferenceHod EA, Zhang N, Sokol SA, et al. Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation. Blood 2010; 115: 4284 ‐ 92.
dc.identifier.citedreferenceWang D, Piknova B, Solomon SB, et al. In vivo reduction of cell‐free methemoglobin to oxyhemoglobin results in vasoconstriction in canines. Transfusion 2013; 53: 3149 ‐ 63.
dc.identifier.citedreferenceCortés‐Puch I, Wang D, Sun J, et al. Washing older blood units before transfusion reduces plasma iron and improves outcomes in experimental canine pneumonia. Blood 2014; 123: 1403 ‐ 11.
dc.identifier.citedreferenceWang D, Cortés‐Puch I, Sun J, et al. Transfusion of older stored blood worsens outcomes in canines depending on the presence and severity of pneumonia. Transfusion 2014; 54: 1712 ‐ 24.
dc.identifier.citedreferenceOpelz G, Terasaki PI. Improvement of kidney‐graft survival with increased numbers of blood transfusions. N Engl J Med 1978; 299: 799 ‐ 803.
dc.identifier.citedreferenceBlajchman MA. Immunomodulatory effects of allogeneic blood transfusions: clinical manifestations and mechanisms. Vox Sang 1998; 74Suppl2: 315 ‐ 9.
dc.identifier.citedreferenceBlajchman MA, Bardossy L, Carmen R, et al. Allogeneic blood transfusion‐induced enhancement of tumor growth: two animal models showing amelioration by leukodepletion and passive transfer using spleen cells. Blood 1993; 81: 1880 ‐ 2.
dc.identifier.citedreferenceBlajchman MA, Bordin JO. Mechanisms of transfusion‐associated immunosuppression. Curr Opin Hematol 1994; 1: 457 ‐ 61.
dc.identifier.citedreferenceBlajchman MA, Dzik S, Vamvakas EC, et al. Clinical and molecular basis of transfusion‐induced immunomodulation: summary of the proceedings of a state‐of‐the‐art conference. Transfus Med Rev 2001; 15: 108 ‐ 35.
dc.identifier.citedreferenceDzik S, Blajchman MA, Blumberg N, et al. Current research on the immunomodulatory effect of allogeneic blood transfusion. Vox Sang 1996; 70: 187 ‐ 94.
dc.identifier.citedreferenceCardo LJ, Wilder D, Salata J. Neutrophil priming, caused by cell membranes and microvesicles in packed red blood cell units, is abrogated by leukocyte depletion at collection. Transfus Apher Sci 2008; 38: 117 ‐ 25.
dc.identifier.citedreferenceBelizaire RM, Makley AT, Campion EM, et al. Resuscitation with washed aged packed red blood cell units decreases the proinflammatory response in mice after hemorrhage. J Trauma Acute Care Surg 2012; 73(2Suppl1): S128 ‐ 33.
dc.identifier.citedreferenceHendrickson JE, Hod EA, Hudson KE, et al. Transfusion of fresh murine red blood cells reverses adverse effects of older stored red blood cells. Transfusion 2011; 51: 2695 ‐ 702.
dc.identifier.citedreferenceGhio M, Contini P, Negrini S, et al. Down regulation of human natural killer cell‐mediated cytolysis induced by blood transfusion: role of transforming growth factor‐β(1), soluble Fas ligand, and soluble Class I human leukocyte antigen. Transfusion 2011; 51: 1567 ‐ 73.
dc.identifier.citedreferenceLong K, Meier C, Bernard A, et al. T‐cell suppression by red blood cells is dependent on intact cells and is a consequence of blood bank processing. Transfusion 2014; 54: 1340 ‐ 7.
dc.identifier.citedreferenceLong K, Meier C, Ward M, et al. Immunologic profiles of red blood cells using in vitro models of transfusion. J Surg Res 2013; 184: 567 ‐ 71.
dc.identifier.citedreferenceMuszynski J, Nateri J, Nicol K, et al. Immunosuppressive effects of red blood cells on monocytes are related to both storage time and storage solution. Transfusion 2012; 52: 794 ‐ 802.
dc.identifier.citedreferenceOttonello L, Ghio M, Contini P, et al. Nonleukoreduced red blood cell transfusion induces a sustained inhibition of neutrophil chemotaxis by stimulating in vivo production of transforming growth factor‐beta1 by neutrophils: role of the immunoglobulinlike transcript 1, sFasL, and sHLA‐I. Transfusion 2007; 47: 1395 ‐ 404.
dc.identifier.citedreferenceBassuni WY, Blajchman MA, Al‐Moshary MA. Why implement universal leukoreduction? Hematol Oncol Stem Cell Ther 2008; 1: 106 ‐ 23.
dc.identifier.citedreferenceBlumberg N, Fine L, Gettings KF, et al. Decreased sepsis related to indwelling venous access devices coincident with implementation of universal leukoreduction of blood transfusions. Transfusion 2005; 45: 1632 ‐ 9.
dc.identifier.citedreferenceHébert PC, Fergusson D, Blajchman MA, et al. Clinical outcomes following institution of the Canadian universal leukoreduction program for red blood cell transfusions. JAMA 2003; 289: 1941 ‐ 9.
dc.identifier.citedreferenceLannan KL, Sahler J, Spinelli SL, et al. Transfusion immunomodulation—the case for leukoreduced and (perhaps) washed transfusions. Blood Cells Mol Dis 2013; 50: 61 ‐ 8.
dc.identifier.citedreferenceBlumberg N, Zhao H, Wang H, et al. The intention‐to‐treat principle in clinical trials and meta‐analyses of leukoreduced blood transfusions in surgical patients. Transfusion 2007; 47: 573 ‐ 81.
dc.identifier.citedreferenceFergusson D, Khanna MP, Tinmouth A, et al. Transfusion of leukoreduced red blood cells may decrease postoperative infections: two meta‐analyses of randomized controlled trials. Can J Anaesth 2004; 51: 417 ‐ 24.
dc.identifier.citedreferenceVanderlinde ES, Heal JM, Blumberg N. Autologous transfusion. BMJ 2002; 324: 772 ‐ 5.
dc.identifier.citedreferencevan de Watering LM, Hermans J, Houbiers JG, et al. Beneficial effects of leukocyte depletion of transfused blood on postoperative complications in patients undergoing cardiac surgery: a randomized clinical trial. Circulation 1998; 97: 562 ‐ 8.
dc.identifier.citedreferenceHashimoto MN, Kimura EY, Yamamoto M, et al. Expression of Fas and Fas ligand on spleen T cells of experimental animals after unmodified or leukoreduced allogeneic blood transfusions. Transfusion 2004; 44: 158 ‐ 63.
dc.identifier.citedreferenceSharma RR, Marwaha N. Leukoreduced blood components: advantages and strategies for its implementation in developing countries. Asian J Transfus Sci 2010; 4: 3 ‐ 8.
dc.identifier.citedreferenceSut C, Tariket S, Chou ML, et al. Duration of red blood cell storage and inflammatory marker generation. Blood Transfus 2017; 15: 145 ‐ 52.
dc.identifier.citedreferenceShapiro MJ. To filter blood or universal leukoreduction: what is the answer? Crit Care 2004; 8Suppl2: S27 ‐ 30.
dc.identifier.citedreferenceStorb R, Rudolph RH, Graham TC, et al. The influence of transfusions from unrelated donors upon marrow grafts between histocompatible canine siblings. J Immunol 1971; 107: 409 ‐ 13.
dc.identifier.citedreferenceStorb R, Epstein RB, Rudolph RH, et al. The effect of prior transfusion on marrow grafts between histocompatible canine siblings. J Immunol 1970; 105: 627 ‐ 33.
dc.identifier.citedreferenceDesmarets M, Cadwell CM, Peterson KR, et al. Minor histocompatibility antigens on transfused leukoreduced units of red blood cells induce bone marrow transplant rejection in a mouse model. Blood 2009; 114: 2315 ‐ 22.
dc.identifier.citedreferencePatel SR, Zimring JC. Transfusion‐induced bone marrow transplant rejection due to minor histocompatibility antigens. Transfus Med Rev 2013; 27: 241 ‐ 8.
dc.identifier.citedreferenceReed W, Lee TH, Norris PJ, et al. Transfusion‐associated microchimerism: a new complication of blood transfusions in severely injured patients. Semin Hematol 2007; 44: 24 ‐ 31.
dc.identifier.citedreferenceLee TH, Paglieroni T, Ohto H, et al. Survival of donor leukocyte subpopulations in immunocompetent transfusion recipients: frequent long‐term microchimerism in severe trauma patients. Blood 1999; 93: 3127 ‐ 39.
dc.identifier.citedreferenceBernard A, Meier C, Ward M, et al. Packed red blood cells suppress T‐cell proliferation through a process involving cell‐cell contact. J Trauma 2010; 69: 320 ‐ 9.
dc.identifier.citedreferenceFragkou PC, Torrance HD, Pearse RM, et al. Perioperative blood transfusion is associated with a gene transcription profile characteristic of immunosuppression: a prospective cohort study. Crit Care 2014; 18: 541.
dc.identifier.citedreferenceGafter U, Kalechman Y, Sredni B. Blood transfusion enhances production of T‐helper‐2 cytokines and transforming growth factor beta in humans. Clin Sci (Lond) 1996; 91: 519 ‐ 23.
dc.identifier.citedreferenceLeal‐Noval SR, Muñoz‐Gómez M, Arellano V, et al. Influence of red blood cell transfusion on CD4+ T‐helper cells immune response in patients undergoing cardiac surgery. J Surg Res 2010; 164: 43 ‐ 9.
dc.identifier.citedreferenceSaas P, Angelot F, Bardiaux L, et al. Phosphatidylserine‐expressing cell by‐products in transfusion: a pro‐inflammatory or an anti‐inflammatory effect? Transfus Clin Biol 2012; 19: 90 ‐ 7.
dc.identifier.citedreferenceFrabetti F, Musiani D, Marini M, et al. White cell apoptosis in packed red cells. Transfusion 1998; 38: 1082 ‐ 9.
dc.identifier.citedreferenceDoffek K, Chen X, Sugg SL, et al. Phosphatidylserine inhibits NFκB and p38 MAPK activation in human monocyte derived dendritic cells. Mol Immunol 2011; 48: 1771 ‐ 7.
dc.identifier.citedreferenceCholette JM, Henrichs KF, Alfieris GM, et al. Washing red blood cells and platelets transfused in cardiac surgery reduces postoperative inflammation and number of transfusions: results of a prospective, randomized, controlled clinical trial. Pediatr Crit Care Med 2012; 13: 290 ‐ 9.
dc.identifier.citedreferenceMuszynski JA, Bale J, Nateri J, et al. Supernatants from stored red blood cell (RBC) units, but not RBC‐derived microvesicles, suppress monocyte function in vitro. Transfusion 2015; 55: 1937 ‐ 45.
dc.identifier.citedreferenceGhio M, Contini P, Ubezio G, et al. Blood transfusions with high levels of contaminating soluble HLA‐I correlate with levels of soluble CD8 in recipients’ plasma; a new control factor in soluble HLA‐I‐mediated transfusion‐modulated immunomodulation? Blood Transfus 2014; 12Suppl1: s105 ‐ 8.
dc.identifier.citedreferenceGhio M, Contini P, Mazzei C, et al. In vitro immunosuppressive activity of soluble HLA class I and Fas ligand molecules: do they play a role in autologous blood transfusion? Transfusion 2001; 41: 988 ‐ 96.
dc.identifier.citedreferenceVallion R, Bonnefoy F, Daoui A, et al. Transforming growth factor‐β released by apoptotic white blood cells during red blood cell storage promotes transfusion‐induced alloimmunomodulation. Transfusion 2015; 55: 1721 ‐ 35.
dc.identifier.citedreferenceBenson DD, Beck AW, Burdine MS, et al. Accumulation of pro‐cancer cytokines in the plasma fraction of stored packed red cells. J Gastrointest Surg 2012; 16: 460 ‐ 8.
dc.identifier.citedreferenceKaram O, Tucci M, Toledano BJ, et al. Length of storage and in vitro immunomodulation induced by prestorage leukoreduced red blood cells. Transfusion 2009; 49: 2326 ‐ 34.
dc.identifier.citedreferenceKeir AK, McPhee AJ, Andersen CC, et al. Plasma cytokines and markers of endothelial activation increase after packed red blood cell transfusion in the preterm infant. Pediatr Res 2013; 73: 75 ‐ 9.
dc.identifier.citedreferenceNagura Y, Tsuno NH, Tanaka M, et al. The effect of pre‐storage whole‐blood leukocyte reduction on cytokines/chemokines levels in autologous CPDA‐1 whole blood. Transfus Apher Sci 2013; 49: 223 ‐ 30.
dc.identifier.citedreferenceNielsen HJ, Reimert CM, Pedersen AN, et al. Time‐dependent, spontaneous release of white cell‐ and platelet‐derived bioactive substances from stored human blood. Transfusion 1996; 36: 960 ‐ 5.
dc.identifier.citedreferenceBury TB, Corhay JL, Radermecker MF. Histamine‐induced inhibition of neutrophil chemotaxis and T‐lymphocyte proliferation in man. Allergy 1992; 47: 624 ‐ 9.
dc.identifier.citedreferencePeterson CG, Skoog V, Venge P. Human eosinophil cationic proteins (ECP and EPX) and their suppressive effects on lymphocyte proliferation. Immunobiology 1986; 171: 1 ‐ 13.
dc.identifier.citedreferenceRemy KE, Natanson C, Klein HG. The influence of the storage lesion(s) on pediatric red cell transfusion. Curr Opin Pediatr 2015; 27: 277 ‐ 85.
dc.identifier.citedreferenceAlshalani A, Acker JP. Red blood cell membrane water permeability increases with length of ex vivo storage. Cryobiology 2017; 76: 51 ‐ 8.
dc.identifier.citedreferenceD’Alessandro A, Gray AD, Szczepiorkowski ZM, et al. Red blood cell metabolic responses to refrigerated storage, rejuvenation, and frozen storage. Transfusion 2017; 57: 1019 ‐ 30.
dc.identifier.citedreferenceD’Alessandro A, Kriebardis AG, Rinalducci S, et al. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion 2015; 55: 205 ‐ 19.
dc.identifier.citedreferenceSpinella PC, Sparrow RL, Hess JR, et al. Properties of stored red blood cells: understanding immune and vascular reactivity. Transfusion 2011; 51: 894 ‐ 900.
dc.identifier.citedreferenceZimrin AB, Hess JR. Current issues relating to the transfusion of stored red blood cells. Vox Sang 2009; 96: 93 ‐ 103.
dc.identifier.citedreferenceD’Alessandro A, Nemkov T, Kelher M, et al. Routine storage of red blood cell (RBC) units in additive solution‐3: a comprehensive investigation of the RBC metabolome. Transfusion 2015; 55: 1155 ‐ 68.
dc.identifier.citedreferenceDelobel J, Prudent M, Rubin O, et al. Subcellular fractionation of stored red blood cells reveals a compartment‐based protein carbonylation evolution. J Proteom 2012; 76SpecNo: 181 ‐ 93.
dc.identifier.citedreferenceDonadee C, Raat NJ, Kanias T, et al. Nitric oxide scavenging by red blood cell microparticles and cell‐free hemoglobin as a mechanism for the red cell storage lesion. Circulation 2011; 124: 465 ‐ 76.
dc.identifier.citedreferenceRemy KE, Sun J, Wang D, et al. Transfusion of recently donated (fresh) red blood cells (RBCs) does not improve survival in comparison with current practice, while safety of the oldest stored units is yet to be established: a meta‐analysis. Vox Sang 2016; 111: 43 ‐ 54.
dc.identifier.citedreferenceRemy KE, Spinella PC. Red blood cell storage age—what we know from clinical trials. Expert Rev Hematol 2016; 9: 1011 ‐ 3.
dc.identifier.citedreferenceBaek JH, Yalamanoglu A, Gao Y, et al. Iron accelerates hemoglobin oxidation increasing mortality in vascular diseased guinea pigs following transfusion of stored blood. JCI Insight 2017; 2: e93577.
dc.identifier.citedreferenceBaek JH, D’Agnillo F, Vallelian F, et al. Hemoglobin‐driven pathophysiology is an in vivo consequence of the red blood cell storage lesion that can be attenuated in guinea pigs by haptoglobin therapy. J Clin Invest 2012; 122: 1444 ‐ 58.
dc.identifier.citedreferenceHod EA, Brittenham GM, Billote GB, et al. Transfusion of human volunteers with older, stored red blood cells produces extravascular hemolysis and circulating non‐transferrin‐bound iron. Blood 2011; 118: 6675 ‐ 82.
dc.identifier.citedreferenceL’Acqua C, Bandyopadhyay S, Francis RO, et al. Red blood cell transfusion is associated with increased hemolysis and an acute phase response in a subset of critically ill children. Am J Hematol 2015; 90: 915 ‐ 20.
dc.identifier.citedreferenceSpitalnik SL. Stored red blood cell transfusions: iron, inflammation, immunity, and infection. Transfusion 2014; 54: 2365 ‐ 71.
dc.identifier.citedreferenceCherayil BJ. The role of iron in the immune response to bacterial infection. Immunol Res 2011; 50: 1 ‐ 9.
dc.identifier.citedreferenceLiang X, Lin T, Sun G, et al. Hemopexin down‐regulates LPS‐induced proinflammatory cytokines from macrophages. J Leukoc Biol 2009; 86: 229 ‐ 35.
dc.identifier.citedreferenceLin T, Sammy F, Yang H, et al. Identification of hemopexin as an anti‐inflammatory factor that inhibits synergy of hemoglobin with HMGB1 in sterile and infectious inflammation. J Immunol 2012; 189: 2017 ‐ 22.
dc.identifier.citedreferenceRifkind JM, Mohanty JG, Nagababu E. The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Front Physiol 2014; 5: 500.
dc.identifier.citedreferenceGanz T. Systemic iron homeostasis. Physiol Rev 2013; 93: 1721 ‐ 41.
dc.identifier.citedreferenceGanz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol 2015; 15: 500 ‐ 10.
dc.identifier.citedreferenceGanz T, Nemeth E. Iron metabolism: interactions with normal and disordered erythropoiesis. Cold Spring Harb Perspect Med 2012; 2: a011668.
dc.identifier.citedreferenceGanz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta 2012; 1823: 1434 ‐ 43.
dc.identifier.citedreferenceMacciò A, Madeddu C, Gramignano G, et al. The role of inflammation, iron, and nutritional status in cancer‐related anemia: results of a large, prospective, observational study. Haematologica 2015; 100: 124 ‐ 32.
dc.identifier.citedreferencePorto BN, Alves LS, Fernández PL, et al. Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors. J Biol Chem 2007; 282: 24430 ‐ 6.
dc.identifier.citedreferenceGraça‐Souza AV, Arruda MA, de Freitas MS, et al. Neutrophil activation by heme: implications for inflammatory processes. Blood 2002; 99: 4160 ‐ 5.
dc.identifier.citedreferenceHod EA, Spitalnik SL. Harmful effects of transfusion of older stored red blood cells: iron and inflammation. Transfusion 2011; 51: 881 ‐ 5.
dc.identifier.citedreferenceHod EA, Brittenham GM, Spitalnik SL. The role of iron in toxicity of stored red blood cell units. Blood 2012; 120: SCI‐46.
dc.identifier.citedreferenceBerra L, Coppadoro A, Yu BL, et al. Transfusion of stored autologous blood does not alter reactive hyperemia index in healthy volunteers. Anesthesiology 2012; 117: 56 ‐ 63.
dc.identifier.citedreferenceStark MJ, Keir AK, Andersen CC. Does non‐transferrin bound iron contribute to transfusion related immune‐modulation in preterms? Arch Dis Child Fetal Neonatal Ed 2013; 98: F424 ‐ 9.
dc.identifier.citedreferenceYazdanbakhsh K, Bao W, Zhong H. Immunoregulatory effects of stored red blood cells. Hematology Am Soc Hematol Educ Program 2011; 2011: 466 ‐ 9.
dc.identifier.citedreferenceTheurl I, Fritsche G, Ludwiczek S, et al. The macrophage: a cellular factory at the interphase between iron and immunity for the control of infections. Biometals 2005; 18: 359 ‐ 67.
dc.identifier.citedreferenceWalker EM Jr, Walker SM. Effects of iron overload on the immune system. Ann Clin Lab Sci 2000; 30: 354 ‐ 65.
dc.identifier.citedreferencePatel MB, Proctor KG, Majetschak M. Extracellular ubiquitin increases in packed red blood cell units during storage. J Surg Res 2006; 135: 226 ‐ 32.
dc.identifier.citedreferenceMajetschak M, Krehmeier U, Bardenheuer M, et al. Extracellular ubiquitin inhibits the TNF‐alpha response to endotoxin in peripheral blood mononuclear cells and regulates endotoxin hyporesponsiveness in critical illness. Blood 2003; 101: 1882 ‐ 90.
dc.identifier.citedreferenceZhu X, Yu B, You P, et al. Ubiquitin released in the plasma of whole blood during storage promotes mRNA expression of Th2 cytokines and Th2‐inducing transcription factors. Transfus Apher Sci 2012; 47: 305 ‐ 11.
dc.identifier.citedreferenceSteiner ME, Ness PM, Assmann SF, et al. Effects of red‐cell storage duration on patients undergoing cardiac surgery. N Engl J Med 2015; 372: 1419 ‐ 29.
dc.identifier.citedreferenceAubron C, Bailey M, McQuilten Z, et al. Duration of red blood cells storage and outcome in critically ill patients. J Crit Care 2014; 29: 476.e1‐8.
dc.identifier.citedreferenceCognasse F, Nguyen KA, Damien P, et al. The inflammatory role of platelets via their TLRs and Siglec receptors. Front Immunol 2015; 6: 83.
dc.identifier.citedreferenceHamzeh‐Cognasse H, Damien P, Chabert A, et al. Platelets and infections—complex interactions with bacteria. Front Immunol 2015; 6: 82.
dc.identifier.citedreferenceStolla M, Refaai MA, Heal JM, et al. Platelet transfusion—the new immunology of an old therapy. Front Immunol 2015; 6: 28.
dc.identifier.citedreferenceLin HC, Chang HW, Hsiao SH, et al. Platelet‐derived microparticles trigger THP‐1 monocytic cell aggregation and release of pro‐coagulant tissue factor‐expressing microparticles in vitro. Transfus Apher Sci 2015; 53: 246 ‐ 52.
dc.identifier.citedreferenceSadallah S, Schmied L, Eken C, et al. Platelet‐derived ectosomes reduce NK cell function. J Immunol 2016; 197: 1663 ‐ 71.
dc.identifier.citedreferenceFu X, Felcyn JR, Odem‐Davis K, et al. Bioactive lipids accumulate in stored red blood cells despite leukoreduction: a targeted metabolomics study. Transfusion 2016; 56: 2560 ‐ 70.
dc.identifier.citedreferenceVlaar AP, Kulik W, Nieuwland R, et al. Accumulation of bioactive lipids during storage of blood products is not cell but plasma derived and temperature dependent. Transfusion 2011; 51: 2358 ‐ 66.
dc.identifier.citedreferenceSilliman CC, Moore EE, Kelher MR, et al. Identification of lipids that accumulate during the routine storage of prestorage leukoreduced red blood cells and cause acute lung injury. Transfusion 2011; 51: 2549 ‐ 54.
dc.identifier.citedreferenceSilliman CC, Clay KL, Thurman GW, et al. Partial characterization of lipids that develop during the routine storage of blood and prime the neutrophil NADPH oxidase. J Lab Clin Med 1994; 124: 684 ‐ 94.
dc.identifier.citedreferenceSilliman CC, Boshkov LK, Mehdizadehkashi Z, et al. Transfusion‐related acute lung injury: epidemiology and a prospective analysis of etiologic factors. Blood 2003; 101: 454 ‐ 62.
dc.identifier.citedreferenceMathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteom 2010; 73: 1907 ‐ 20.
dc.identifier.citedreferencePiccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and clinical implications. Blood Rev 2007; 21: 157 ‐ 71.
dc.identifier.citedreferenceSadallah S, Eken C, Schifferli JA. Erythrocyte‐derived ectosomes have immunosuppressive properties. J Leukoc Biol 2008; 84: 1316 ‐ 25.
dc.identifier.citedreferenceLeroyer AS, Isobe H, Lesèche G, et al. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol 2007; 49: 772 ‐ 7.
dc.identifier.citedreferenceCaby MP, Lankar D, Vincendeau‐Scherrer C, et al. Exosomal‐like vesicles are present in human blood plasma. Int Immunol 2005; 17: 879 ‐ 87.
dc.identifier.citedreferenceDey‐Hazra E, Hertel B, Kirsch T, et al. Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing. Vasc Health Risk Manag 2010; 6: 1125 ‐ 33.
dc.identifier.citedreferenceRubin O, Crettaz D, Tissot JD, et al. Pre‐analytical and methodological challenges in red blood cell microparticle proteomics. Talanta 2010; 82: 1 ‐ 8.
dc.identifier.citedreferenceJy W, Mao WW, Horstman L, et al. Platelet microparticles bind, activate and aggregate neutrophils in vitro. Blood Cells Mol Dis 1995; 21: 217 ‐ 31; discussion 231a.
dc.identifier.citedreferenceRubin O, Crettaz D, Canellini G, et al. Microparticles in stored red blood cells: an approach using flow cytometry and proteomic tools. Vox Sang 2008; 95: 288 ‐ 97.
dc.identifier.citedreferenceBaj‐Krzyworzeka M, Majka M, Pratico D, et al. Platelet‐derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 2002; 30: 450 ‐ 9.
dc.identifier.citedreferenceDanesh A, Inglis HC, Jackman RP, et al. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T‐cell responses in vitro. Blood 2014; 123: 687 ‐ 96.
dc.identifier.citedreferenceBakkour S, Acker JP, Chafets DM, et al. Manufacturing method affects mitochondrial DNA release and extracellular vesicle composition in stored red blood cells. Vox Sang 2016; 111: 22 ‐ 32.
dc.identifier.citedreferenceBicalho B, Pereira AS, Acker JP. Buffy coat (top/bottom)‐ and whole‐blood filtration (top/top)‐produced red cell concentrates differ in size of extracellular vesicles. Vox Sang 2015; 109: 214 ‐ 20.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.