Show simple item record

Frontline Science: Rapid adipose tissue expansion triggers unique proliferation and lipid accumulation profiles in adipose tissue macrophages

dc.contributor.authorMuir, Lindsey A.
dc.contributor.authorKiridena, Samadhi
dc.contributor.authorGriffin, Cameron
dc.contributor.authorDelProposto, Jennifer B.
dc.contributor.authorGeletka, Lynn
dc.contributor.authorMartinez‐santibañez, Gabriel
dc.contributor.authorZamarron, Brian F.
dc.contributor.authorLucas, Hannah
dc.contributor.authorSinger, Kanakadurga
dc.contributor.authorO’ Rourke, Robert W.
dc.contributor.authorLumeng, Carey N.
dc.date.accessioned2018-04-04T18:53:48Z
dc.date.available2019-05-13T14:45:26Zen
dc.date.issued2018-04
dc.identifier.citationMuir, Lindsey A.; Kiridena, Samadhi; Griffin, Cameron; DelProposto, Jennifer B.; Geletka, Lynn; Martinez‐santibañez, Gabriel ; Zamarron, Brian F.; Lucas, Hannah; Singer, Kanakadurga; O’ Rourke, Robert W. ; Lumeng, Carey N. (2018). "Frontline Science: Rapid adipose tissue expansion triggers unique proliferation and lipid accumulation profiles in adipose tissue macrophages." Journal of Leukocyte Biology 103(4): 615-628.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/142947
dc.description.abstractObesityâ related changes in adipose tissue leukocytes, in particular adipose tissue macrophages (ATMs) and dendritic cells (ATDCs), are implicated in metabolic inflammation, insulin resistance, and altered regulation of adipocyte function. We evaluated stromal cell and white adipose tissue (WAT) expansion dynamics with high fat diet (HFD) feeding for 3â 56 days, quantifying ATMs, ATDCs, endothelial cells (ECs), and preadipocytes (PAs) in visceral epididymal WAT and subcutaneous inguinal WAT. To better understand mechanisms of the early response to obesity, we evaluated ATM proliferation and lipid accumulation. ATMs, ATDCs, and ECs increased with rapid WAT expansion, with ATMs derived primarily from a CCR2â independent resident population. WAT expansion stimulated proliferation in resident ATMs and ECs, but not CD11c+ ATMs or ATDCs. ATM proliferation was unperturbed in Csf2â and Rag1â deficient mice with WAT expansion. Additionally, ATM apoptosis decreased with WAT expansion, and proliferation and apoptosis reverted to baseline with weight loss. Adipocytes reached maximal hypertrophy at 28 days of HFD, coinciding with a plateau in resident ATM accumulation and the appearance of lipidâ laden CD11c+ ATMs in visceral epididymal WAT. ATM increases were proportional to tissue expansion and adipocyte hypertrophy, supporting adipocyteâ mediated regulation of resident ATMs. The appearance of lipidâ laden CD11c+ ATMs at peak adipocyte size supports a role in responding to ectopic lipid accumulation within adipose tissue. In contrast, ATDCs increase independently of proliferation and may be derived from circulating precursors. These changes precede and establish the setting in which largeâ scale adipose tissue infiltration of CD11c+ ATMs, inflammation, and adipose tissue dysfunction contributes to insulin resistance.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheradipose tissue dendritic cell
dc.subject.otherobesity
dc.subject.otheradipocyte
dc.subject.otherfoam cell
dc.subject.otherapoptosis
dc.titleFrontline Science: Rapid adipose tissue expansion triggers unique proliferation and lipid accumulation profiles in adipose tissue macrophages
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142947/1/jlb10097_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142947/2/jlb10097.pdf
dc.identifier.doi10.1002/JLB.3HI1017-422R
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferenceJenkins SJ, Ruckerl D, Thomas GD, et al. Ilâ 4 directly signals tissueâ resident macrophages to proliferate beyond homeostatic levels controlled by csfâ 1. J Exp Med. 2013; 210: 2477 â 2491.
dc.identifier.citedreferenceReilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017; 11: 90.
dc.identifier.citedreferenceSinger K, DelProposto J, Morris Le, et al. Dietâ induced obesity promotes myelopoiesis in hematopoietic stem cells. Mol Metab. 2014;3:664â 675.
dc.identifier.citedreferenceCho KW, Zamarron BF, Muir LA, et al. Adipose tissue dendritic cells are independent contributors to obesityâ induced inflammation and insulin resistance. J Immunol. 2016; 197: 3650 â 3661.
dc.identifier.citedreferencePamir N, Liu NC, Irwin A, et al. Granulocyte/macrophage colonyâ stimulating factorâ dependent dendritic cells restrain lean adipose tissue expansion. J Biol Chem. 2015; 290: 14656 â 14667.
dc.identifier.citedreferenceCho KW, Morris DL, DelProposto JL, et al. An MHC IIâ dependent activation loop between adipose tissue macrophages and CD4+ T cells controls obesityâ induced inflammation. Cell Rep. 2014; 9: 605 â 617.
dc.identifier.citedreferenceShapiro H, Pecht T, Shacoâ Levy R, et al. Adipose tissue foam cells are present in human obesity. J Clin Endocrinol Metab. 2013; 98: 1173 â 1181.
dc.identifier.citedreferenceJenkins SJ, Ruckerl D, Cook PC, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of th2 inflammation. Science. 2011; 332: 1284 â 1288.
dc.identifier.citedreferenceZamarron BF, Mergian TA, Cho KW, et al. Macrophage proliferation sustains adipose tissue inflammation in formerly obese mice. Diabetes. 2017; 66: 392 â 406.
dc.identifier.citedreferenceHill AA, Andersonâ Baucum EK, Kennedy AJ, Webb CD, Yull FE, Hasty AH. Activation of nfâ κb drives the enhanced survival of adipose tissue macrophages in an obesogenic environment. Mol Metab. 2015; 4: 665 â 677.
dc.identifier.citedreferenceWiner S, Chan Y, Paltser G, et al. Normalization of obesityâ associated insulin resistance through immunotherapy. Nat Med. 2009; 15: 921 â 929.
dc.identifier.citedreferenceFeuerer M, Herrero L, Cipolletta D, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009; 15: 930 â 939.
dc.identifier.citedreferenceNishimura S, Manabe I, Nagasaki M, et al. Cd8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009; 15: 914 â 920.
dc.identifier.citedreferenceJi Y, Sun S, Xia S, Yang L, Li X, Qi L. Short term high fat diet challenge promotes alternative macrophage polarization in adipose tissue via natural killer T cells and interleukinâ 4. J Biol Chem. 2012; 287: 24378 â 24386.
dc.identifier.citedreferenceLumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011; 121: 2111 â 2117.
dc.identifier.citedreferenceBraune J, Weyer U, Hobusch C, et al. Ilâ 6 regulates m2 polarization and local proliferation of adipose tissue macrophages in obesity. J Immunol. 2017; 198: 2927 â 2934.
dc.identifier.citedreferenceYoshida H, Watanabe H, Ishida A, et al. Naringenin suppresses macrophage infiltration into adipose tissue in an early phase of highâ fat dietâ induced obesity. Biochem Biophys Res Commun. 2014; 454: 95 â 101.
dc.identifier.citedreferenceTardelli M, Zeyda K, Morenoâ Viedma V, et al. Osteopontin is a key player for local adipose tissue macrophage proliferation in obesity. Mol Metab. 2016; 5: 1131 â 1137.
dc.identifier.citedreferenceChapman J, Miles PD, Ofrecio JM, et al. Osteopontin is required for the early onset of high fat dietâ induced insulin resistance in mice. PLoS One. 2010; 5: e13959.
dc.identifier.citedreferenceZheng C, Yang Q, Cao J, et al. Local proliferation initiates macrophage accumulation in adipose tissue during obesity. Cell Death Dis. 2016; 31: 54.
dc.identifier.citedreferenceKim JI, Huh JY, Sohn JH, et al. Lipidâ overloaded enlarged adipocytes provoke insulin resistance independent of inflammation. Mol Cell Biol. 2015; 35: 1686 â 1699.
dc.identifier.citedreferenceWensveen FM, Jelencic V, Valentic S, et al. Nk cells link obesityâ induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015; 16: 376.
dc.identifier.citedreferenceAouadi M, Vangala P, Yawe JC, et al. Lipid storage by adipose tissue macrophages regulates systemic glucose tolerance. Am J Physiol Endocrinol Metab. 2014; 307: E374 â E383.
dc.identifier.citedreferenceKosteli A, Sugaru E, Haemmerle G, et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest. 2010; 120: 3466 â 3479.
dc.identifier.citedreferenceNguyen MT, Favelyukis S, Nguyen AK, et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via tollâ like receptors 2 and 4 and jnkâ dependent pathways. J Biol Chem. 2007; 282: 35279 â 35292.
dc.identifier.citedreferenceBourlier V, Zakaroffâ Girard A, Miranville A, et al. Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation. 2008; 117: 806 â 815.
dc.identifier.citedreferenceLee YH, Petkova AP, Granneman JG. Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metab. 2013; 18: 355 â 367.
dc.identifier.citedreferenceParlee SD, Lentz SI, Mori H, MacDougald OA. Quantifying size and number of adipocytes in adipose tissue. Methods Enzymol. 2014; 537: 93 â 122.
dc.identifier.citedreferenceWang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med. 2013; 19: 1338 â 1344.
dc.identifier.citedreferenceGutierrez DA, Kennedy A, Orr JS, et al. Aberrant accumulation of undifferentiated myeloid cells in the adipose tissue of ccr2â deficient mice delays improvements in insulin sensitivity. Diabetes. 2011; 60: 2820 â 2829.
dc.identifier.citedreferenceMulder P, Morrison MC, Wielinga PY, van Duyvenvoorde W, Kooistra T, Kleemann R. Surgical removal of inflamed epididymal white adipose tissue attenuates the development of nonâ alcoholic steatohepatitis in obesity. Int J Obes. 2016; 40: 675 â 684.
dc.identifier.citedreferenceUnger RH, Scherer PE. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol Metab. 2010; 21: 345 â 352.
dc.identifier.citedreferenceOhman MK, Wright AP, Wickenheiser KJ, Luo W, Eitzman DT. Visceral adipose tissue and atherosclerosis. Curr Vasc Pharmacol. 2009; 7: 169 â 179.
dc.identifier.citedreferenceWeisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003; 112: 1796 â 1808.
dc.identifier.citedreferenceXu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesityâ related insulin resistance. J Clin Invest. 2003; 112: 1821 â 1830.
dc.identifier.citedreferenceMorris DL, Singer K, Lumeng CN. Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states. Curr Opin Clin Nutr Metab Care. 2011; 14: 341 â 346.
dc.identifier.citedreferenceWeisberg SP, Hunter D, Huber R, et al. Ccr2 modulates inflammatory and metabolic effects of highâ fat feeding. J Clin Invest. 2006; 116: 115 â 124.
dc.identifier.citedreferenceLumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007; 117: 175 â 184.
dc.identifier.citedreferenceWentworth JM, Naselli G, Brown WA, et al. Proâ inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes. 2010; 59: 1648 â 1656.
dc.identifier.citedreferencePrieur X, Mok CY, Velagapudi VR, et al. Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and m2/m1 polarization in obese mice. Diabetes. 2011; 60: 797 â 809.
dc.identifier.citedreferencePatsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG. Ablation of CD11câ positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 2008; 8: 301 â 309.
dc.identifier.citedreferenceXu X, Grijalva A, Skowronski A, van Eijk M, Serlie MJ, Ferrante AW. Obesity activates a program of lysosomalâ dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 2013; 18: 816 â 830.
dc.identifier.citedreferenceOdegaard JI, Ricardoâ Gonzalez RR, Goforth MH, et al. Macrophageâ specific ppargamma controls alternative activation and improves insulin resistance. Nature. 2007; 447: 1116 â 1120.
dc.identifier.citedreferenceKang K, Reilly SM, Karabacak V, et al. Adipocyteâ derived th2 cytokines and myeloid ppardelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 2008; 7: 485 â 495.
dc.identifier.citedreferenceOdegaard JI, Ricardoâ Gonzalez RR, Red Eagle A, et al. Alternative m2 activation of kupffer cells by ppardelta ameliorates obesityâ induced insulin resistance. Cell Metab. 2008; 7: 496 â 507.
dc.identifier.citedreferenceNawaz A, Aminuddin A, Kado T, et al. CD206+ m2â like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors. Nat Commun. 2017; 8: 017 â 00231.
dc.identifier.citedreferenceSpencer M, Yaoâ Borengasser A, Unal R, et al. Adipose tissue macrophages in insulinâ resistant subjects are associated with collagen vi and fibrosis and demonstrate alternative activation. Am J Physiol Endocrinol Metab. 2010; 299: E1016 â E1027.
dc.identifier.citedreferenceShaul ME, Bennett G, Strissel KJ, Greenberg AS, Obin MS. Dynamic, m2â like remodeling phenotypes of CD11c+ adipose tissue macrophages during highâ fat dietâ induced obesity in mice. Diabetes. 2010; 59: 1171 â 1181.
dc.identifier.citedreferenceAmano S, Cohen JessicaL, Vangala P, et al. Local proliferation of macrophages contributes to obesityâ associated adipose tissue inflammation. Cell Metabolism. 2014; 19: 162 â 171.
dc.identifier.citedreferenceHaase J, Weyer U, Immig K, et al. Local proliferation of macrophages in adipose tissue during obesityâ induced inflammation. Diabetologia. 2014; 57: 562 â 571.
dc.identifier.citedreferenceLee YS, Li P, Huh JY, et al. Inflammation is necessary for longâ term but not shortâ term highâ fat dietâ induced insulin resistance. Diabetes. 2011; 60: 2474 â 2483.
dc.identifier.citedreferenceLumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during dietâ induced obesity. Diabetes. 2007; 56: 16 â 23.
dc.identifier.citedreferenceMorris DL, Oatmen KE, Wang T, DelProposto JL, Lumeng CN. Cx3cr1 deficiency does not influence trafficking of adipose tissue macrophages in mice with dietâ induced obesity. Obesity. 2012; 20: 1189 â 1199.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.