Show simple item record

CD71+ erythroid cells from neonates born to women with preterm labor regulate cytokine and cellular responses

dc.contributor.authorMiller, Derek
dc.contributor.authorRomero, Roberto
dc.contributor.authorUnkel, Ronald
dc.contributor.authorXu, Yi
dc.contributor.authorVadillo‐ortega, Felipe
dc.contributor.authorHassan, Sonia S.
dc.contributor.authorGomez‐lopez, Nardhy
dc.date.accessioned2018-04-04T18:54:11Z
dc.date.available2019-05-13T14:45:27Zen
dc.date.issued2018-04
dc.identifier.citationMiller, Derek; Romero, Roberto; Unkel, Ronald; Xu, Yi; Vadillo‐ortega, Felipe ; Hassan, Sonia S.; Gomez‐lopez, Nardhy (2018). "CD71+ erythroid cells from neonates born to women with preterm labor regulate cytokine and cellular responses." Journal of Leukocyte Biology 103(4): 761-775.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/142950
dc.description.abstractNeonatal CD71+ erythroid cells are thought to have immunosuppressive functions. Recently, we demonstrated that CD71+ erythroid cells from neonates born to women who underwent spontaneous preterm labor (PTL) are reduced to levels similar to those of term neonates; yet, their functional properties are unknown. Herein, we investigated the functionality of CD71+ erythroid cells from neonates born to women who underwent spontaneous preterm or term labor. CD71+ erythroid cells from neonates born to women who underwent PTL displayed a similar mRNA profile to that of those from term neonates. The direct contact between preterm or term neonatal CD71+ erythroid cells and maternal mononuclear immune cells, but not soluble products from these cells, induced the release of proinflammatory cytokines and a reduction in the release of TGFâ β. Moreover, PTLâ derived neonatal CD71+ erythroid cells (1) modestly altered CD8+ T cell activation; (2) inhibited conventional CD4+ and CD8+ Tâ cell expansion; (3) suppressed the expansion of CD8+ regulatory T cells; (4) regulated cytokine responses mounted by myeloid cells in the presence of a microbial product; and (5) indirectly modulated Tâ cell cytokine responses. In conclusion, neonatal CD71+ erythroid cells regulate neonatal Tâ cell and myeloid responses and their direct contact with maternal mononuclear cells induces a proinflammatory response. These findings provide insight into the biology of neonatal CD71+ erythroid cells during the physiologic and pathologic processes of labor.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercytokines
dc.subject.otherpremature
dc.subject.otherregulatory T cells
dc.subject.otherT cells
dc.subject.otherumbilical cord blood
dc.subject.otherhuman
dc.subject.otherpregnancy
dc.subject.otherparturition
dc.subject.otherneonatal immunity
dc.subject.othermyeloid cells
dc.titleCD71+ erythroid cells from neonates born to women with preterm labor regulate cytokine and cellular responses
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142950/1/jlb10051_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142950/2/jlb10051-sup-0003-TableS2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142950/3/jlb10051-sup-0002-TableS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142950/4/jlb10051-sup-0001-Figures.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142950/5/jlb10051.pdf
dc.identifier.doi10.1002/JLB.5A0717-291RRR
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferenceGomezâ Lopez N, Vadilloâ Perez L, Hernandezâ Carbajal A, Godinesâ Enriquez M, Olson DM, Vadilloâ Ortega F. Specific inflammatory microenvironments in the zones of the fetal membranes at term delivery. Am J Obstet Gynecol. 2011; 205:235.e15â 24.
dc.identifier.citedreferenceAthayde N, Romero R, Maymon E, et al. A role for the novel cytokine RANTES in pregnancy and parturition. Am J Obstet Gynecol. 1999; 181: 989 â 994.
dc.identifier.citedreferenceHamilton SA, Tower CL, Jones RL. Identification of chemokines associated with the recruitment of decidual leukocytes in human labour: potential novel targets for preterm labour. PLoS One. 2013; 8: e56946.
dc.identifier.citedreferenceRomero R, Ceska M, Avila C, Mazor M, Behnke E, Lindley I. Neutrophil attractant/activating peptideâ 1/interleukinâ 8 in term and preterm parturition. Am J Obstet Gynecol. 1991; 165: 813 â 820.
dc.identifier.citedreferenceCherouny PH, Pankuch GA, Romero R, et al. Neutrophil attractant/activating peptideâ 1/interleukinâ 8: association with histologic chorioamnionitis, preterm delivery, and bioactive amniotic fluid leukoattractants. Am J Obstet Gynecol. 1993; 169: 1299 â 1303.
dc.identifier.citedreferenceKeelan JA, Yang J, Romero RJ, et al. Epithelial cellâ derived neutrophilâ activating peptideâ 78 is present in fetal membranes and amniotic fluid at increased concentrations with intraâ amniotic infection and preterm delivery. Biol Reprod. 2004; 70: 253 â 259.
dc.identifier.citedreferenceRomero R, Grivel JC, Tarca AL, et al. Evidence of perturbations of the cytokine network in preterm labor. Am J Obstet Gynecol. 2015; 213: 836 e1 â 836 e18.
dc.identifier.citedreferenceTarca AL, Fitzgerald W, Chaemsaithong P, et al. The cytokine network in women with an asymptomatic short cervix and the risk of preterm delivery. Am J Reprod Immunol. 2017; 78 ( 3 ): e12686.
dc.identifier.citedreferenceGomezâ Lopez N, Vegaâ Sanchez R, Castilloâ Castrejon M, Romero R, Cubeiroâ Arreola K, Vadilloâ Ortega F. Evidence for a role for the adaptive immune response in human term parturition. Am J Reprod Immunol. 2013; 69: 212 â 230.
dc.identifier.citedreferenceBerry SM, Romero R, Gomez R, et al. Premature parturition is characterized by in utero activation of the fetal immune system. Am J Obstet Gynecol. 1995; 173: 1315 â 1320.
dc.identifier.citedreferenceGervasi MT, Chaiworapongsa T, Naccasha N, et al. Maternal intravascular inflammation in preterm premature rupture of membranes. J Matern Fetal Neonatal Med. 2002; 11: 171 â 175.
dc.identifier.citedreferenceKhosrotehrani K, Wataganara T, Bianchi DW, Johnson KL. Fetal cellâ free DNA circulates in the plasma of pregnant mice: relevance for animal models of fetomaternal trafficking. Hum Reprod. 2004; 19: 2460 â 2464.
dc.identifier.citedreferencePhillippe M. Cellâ free fetal DNAâ a trigger for parturition. New Engl J Med. 2014; 370: 2534 â 2536.
dc.identifier.citedreferenceLefrancois L. Development, trafficking, and function of memory Tâ cell subsets. Immunol Rev. 2006; 211: 93 â 103.
dc.identifier.citedreferenceLuciano AA, Yu H, Jackson LW, Wolfe LA, Bernstein HB. Preterm labor and chorioamnionitis are associated with neonatal T cell activation. PLoS One. 2011; 6: e16698.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Arenasâ Hernandez M, et al. In vivo Tâ cell activation by a monoclonal alphaCD3epsilon antibody induces preterm labor and birth. Am J Reprod Immunol. 2016; 76: 386 â 390.
dc.identifier.citedreferenceNamdar A, Koleva P, Shahbaz S, Strom S, Gerdts V, Elahi S. CD71+ erythroid suppressor cells impair adaptive immunity against Bordetella pertussis. Sci Rep. 2017; 7: 7728.
dc.identifier.citedreferenceRomero R, Gomez R, Ghezzi F, et al. A fetal systemic inflammatory response is followed by the spontaneous onset of preterm parturition. Am J Obstet Gynecol. 1998; 179: 186 â 193.
dc.identifier.citedreferenceGotsch F, Romero R, Kusanovic JP, et al. The fetal inflammatory response syndrome. Clin Obstet Gynecol. 2007; 50: 652 â 683.
dc.identifier.citedreferenceLee SE, Romero R, Jung H, Park CW, Park JS, Yoon BH. The intensity of the fetal inflammatory response in intraamniotic inflammation with and without microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 2007;197: 294. e1 â 6.
dc.identifier.citedreferenceCosmi L, Liotta F, Lazzeri E, et al. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood. 2003; 102: 4107 â 4114.
dc.identifier.citedreferenceNakagawa T, Tsuruoka M, Ogura H, et al. ILâ 6 positively regulates Foxp3+CD8+ T cells in vivo. Int Immunol. 2010; 22: 129 â 139.
dc.identifier.citedreferenceShao L, Jacobs AR, Johnson VV, Mayer L. Activation of CD8+ regulatory T cells by human placental trophoblasts. J Immunol. 2005; 174: 7539 â 7547.
dc.identifier.citedreferenceGomezâ Lopez N, Olson DM, Robertson SA. Interleukinâ 6 controls uterine Th9 cells and CD8(+) T regulatory cells to accelerate parturition in mice. Immunol Cell Biol. 2016; 94: 79 â 89.
dc.identifier.citedreferenceArenasâ Hernandez M, Romero R, St Louis D, Hassan SS, Kaye EB, Gomezâ Lopez N. An imbalance between innate and adaptive immune cells at the maternalâ fetal interface occurs prior to endotoxinâ induced preterm birth. Cell Mol Immunol. 2016; 13: 462 â 473.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Arenasâ Hernandez M, et al. In vivo activation of invariant natural killer T cells induces systemic and local alterations in Tâ cell subsets prior to preterm birth. Clin Exp Immunol. 2017; 189: 211 â 225.
dc.identifier.citedreferenceReibke R, Garbi N, Ganss R, Hammerling GJ, Arnold B, Oelert T. CD8+ regulatory T cells generated by neonatal recognition of peripheral selfâ antigen. Proc Natl Acad Sci U S A. 2006; 103: 15142 â 15147.
dc.identifier.citedreferenceDunsmore G, Bozorgmehr N, Delyea C, Koleva P, Namdar A, Elahi S. Erythroid suppressor cells compromise neonatal immune response against Bordetella pertussis. J Immunol. 2017; 199: 2081 â 2095.
dc.identifier.citedreferenceSteinborn A, Sohn C, Sayehli C, et al. Spontaneous labour at term is associated with fetal monocyte activation. Clin Exp Immunol. 1999; 117: 147 â 152.
dc.identifier.citedreferenceWisgrill L, Groschopf A, Herndl E, et al. Reduced TNFâ alpha response in preterm neonates is associated with impaired nonclassic monocyte function. J Leukoc Biol. 2016; 100: 607 â 612.
dc.identifier.citedreferenceLevy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol. 2007; 7: 379 â 390.
dc.identifier.citedreferenceSiegrist CA. Vaccination in the neonatal period and early infancy. Int Rev Immunol. 2000; 19: 195 â 219.
dc.identifier.citedreferenceAdkins B. Development of neonatal Th1/Th2 function. Int Rev Immunol. 2000; 19: 157 â 171.
dc.identifier.citedreferenceGarcia AM, Fadel SA, Cao S, Sarzotti M. T cell immunity in neonates. Immunol Res. 2000; 22: 177 â 190.
dc.identifier.citedreferenceGarty BZ, Ludomirsky A, Danon YL, Peter JB, Douglas SD. Placental transfer of immunoglobulin G subclasses. Clin Diagn Lab Immunol. 1994; 1: 667 â 669.
dc.identifier.citedreferenceKrishnan S, Craven M, Welliver RC, Ahmad N, Halonen M. Differences in participation of innate and adaptive immunity to respiratory syncytial virus in adults and neonates. J Infect Dis. 2003; 188: 433 â 439.
dc.identifier.citedreferenceFirth MA, Shewen PE, Hodgins DC. Passive and active components of neonatal innate immune defenses. Anim Health Res Rev. 2005; 6: 143 â 158.
dc.identifier.citedreferenceQing G, Rajaraman K, Bortolussi R. Diminished priming of neonatal polymorphonuclear leukocytes by lipopolysaccharide is associated with reduced CD14 expression. Infect Immunity. 1995; 63: 248 â 252.
dc.identifier.citedreferenceLevy O, Martin S, Eichenwald E, et al. Impaired innate immunity in the newborn: newborn neutrophils are deficient in bactericidal/permeabilityâ increasing protein. Pediatrics. 1999; 104: 1327 â 1333.
dc.identifier.citedreferenceYost CC, Schwertz H, Cody MJ, et al. Neonatal NETâ inhibitory factor and related peptides inhibit neutrophil extracellular trap formation. J Clin Investig. 2016; 126: 3783 â 3798.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. Neutrophil extracellular traps in the amniotic cavity of women with intraâ amniotic infection: a new mechanism of host defense. Reprod Sci. 2017;24:1139â 1153.
dc.identifier.citedreferenceLevy O, Zarember KA, Roy RM, Cywes C, Godowski PJ, Wessels MR. Selective impairment of TLRâ mediated innate immunity in human newborns: neonatal blood plasma reduces monocyte TNFâ alpha induction by bacterial lipopeptides, lipopolysaccharide, and imiquimod, but preserves the response to Râ 848. J Immunol. 2004; 173: 4627 â 4634.
dc.identifier.citedreferencede Jong E, Strunk T, Burgner D, Lavoie PM, Currie A. The phenotype and function of preterm infant monocytes: implications for susceptibility to infection. J Leukoc Biol. 2017; 102: 645 â 656.
dc.identifier.citedreferenceWong OH, Huang FP, Chiang AK. Differential responses of cord and adult bloodâ derived dendritic cells to dying cells. Immunology. 2005; 116: 13 â 20.
dc.identifier.citedreferenceSiegrist CA, Aspinall R. Bâ cell responses to vaccination at the extremes of age. Nat Rev Immunol. 2009; 9: 185 â 194.
dc.identifier.citedreferenceSharma AA, Jen R, Butler A, Lavoie PM. The developing human preterm neonatal immune system: a case for more research in this area. Clin Immunol. 2012; 145: 61 â 68.
dc.identifier.citedreferencePavia CS, Stites DP. Immunosuppressive activity of murine newborn spleen cells, I: Selective inhibition of in vitro lymphocyte activation. Cell Immunol. 1979; 42: 48 â 60.
dc.identifier.citedreferenceNorton MT, Fortner KA, Bizargity P, Bonney EA. Pregnancy alters the proliferation and apoptosis of mouse splenic erythroid lineage cells and leukocytes. Biol Reprod. 2009; 81: 457 â 464.
dc.identifier.citedreferenceRincon MR, Oppenheimer K, Bonney EA. Selective accumulation of Th2â skewing immature erythroid cells in developing neonatal mouse spleen. Int J Biol Sci. 2012; 8: 719 â 730.
dc.identifier.citedreferenceHermansen MC. Nucleated red blood cells in the fetus and newborn. Arch Dis Child Fetal Neonatal Ed. 2001; 84: F211 â F215.
dc.identifier.citedreferenceElahi S, Ertelt JM, Kinder JM, et al. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature. 2013; 504: 158 â 162.
dc.identifier.citedreferenceGahmberg CG, Jokinen M, Andersson LC. Expression of the major sialoglycoprotein (glycophorin) on erythroid cells in human bone marrow. Blood. 1978; 52: 379 â 387.
dc.identifier.citedreferenceRobinson J, Sieff C, Delia D, Edwards PA, Greaves M. Expression of cellâ surface HLAâ DR, HLAâ ABC and glycophorin during erythroid differentiation. Nature. 1981; 289: 68 â 71.
dc.identifier.citedreferenceLebman D, Trucco M, Bottero L, Lange B, Pessano S, Rovera G. A monoclonal antibody that detects expression of transferrin receptor in human erythroid precursor cells. Blood. 1982; 59: 671 â 678.
dc.identifier.citedreferenceElahi S. New insight into an old concept: role of immature erythroid cells in immune pathogenesis of neonatal infection. Front Immunol. 2014; 5: 376.
dc.identifier.citedreferenceWynn JL, Scumpia PO, Stocks BT, et al. Neonatal CD71+ erythroid cells do not modify murine sepsis mortality. J Immunol. 2015; 195: 1064 â 1070.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. Umbilical cord CD71+ erythroid cells are reduced in neonates born to women in spontaneous preterm labor. Am J Reprod Immunol. 2016; 76: 280 â 284.
dc.identifier.citedreferenceGomezâ Lopez N, Guilbert LJ, Olson DM. Invasion of the leukocytes into the fetalâ maternal interface during pregnancy. J Leukoc Biol. 2010; 88: 625 â 633.
dc.identifier.citedreferenceGomezâ Lopez N, StLouis D, Lehr MA, Sanchezâ Rodriguez EN, Arenasâ Hernandez M. Immune cells in term and preterm labor. Cell Mol Immunol. 2014; 11: 571 â 581.
dc.identifier.citedreferenceCappelletti M, Della Bella S, Ferrazzi E, Mavilio D, Divanovic S. Inflammation and preterm birth. J Leukoc Biol. 2016; 99: 67 â 78.
dc.identifier.citedreferenceAgrawal V, Jaiswal MK, Pamarthy S, et al. Role of notch signaling during lipopolysaccharideâ induced preterm labor. J Leukoc Biol. 2016; 100: 261 â 274.
dc.identifier.citedreferenceRitchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNAâ sequencing and microarray studies. Nucleic Acids Res. 2015; 43: e47.
dc.identifier.citedreferenceBianchi DW, Flint AF, Pizzimenti MF, Knoll JH, Latt SA. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci U S A. 1990; 87: 3279 â 3283.
dc.identifier.citedreferenceWang JY, Zhen DK, Falco VM, et al. Fetal nucleated erythrocyte recovery: fluorescence activated cell sortingâ based positive selection using antiâ gamma globin versus magnetic activated cell sorting using antiâ CD45 depletion and antiâ gamma globin positive selection. Cytometry. 2000; 39: 224 â 230.
dc.identifier.citedreferenceFerran C, Sheehan K, Dy M, et al. Cytokineâ related syndrome following injection of antiâ CD3 monoclonal antibody: further evidence for transient in vivo T cell activation. Eur J Immunol. 1990; 20: 509 â 515.
dc.identifier.citedreferenceHara T, Jung LK, Bjorndahl JM, Fu SM. Human T cell activation. III. Rapid induction of a phosphorylated 28 kD/32 kD disulfideâ linked early activation antigen (EA 1) by 12â o â tetradecanoyl phorbolâ 13â acetate, mitogens, and antigens. J Exp Med. 1986; 164: 1988 â 2005.
dc.identifier.citedreferenceTesti R, Phillips JH, Lanier LL. T cell activation via Leuâ 23 (CD69). J Immunol. 1989; 143: 1123 â 1128.
dc.identifier.citedreferenceJung TM, Gallatin WM, Weissman IL, Dailey MO. Downâ regulation of homing receptors after T cell activation. J Immunol. 1988; 141: 4110 â 4117.
dc.identifier.citedreferenceAluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004; 5: 266 â 271.
dc.identifier.citedreferenceGuerin LR, Prins JR, Robertson SA. Regulatory Tâ cells and immune tolerance in pregnancy: a new target for infertility treatment?. Hum Reprod Update. 2009; 15: 517 â 535.
dc.identifier.citedreferenceRowe JH, Ertelt JM, Xin L, Way SS. Pregnancy imprints regulatory memory that sustains energy to fetal antigen. Nature. 2012; 490: 102 â 106.
dc.identifier.citedreferenceSamstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY. Extrathymic generation of regulatory T cells in placental mammals mitigates maternalâ fetal conflict. Cell. 2012; 150: 29 â 38.
dc.identifier.citedreferenceErlebacher A. Immunology of the maternalâ fetal interface. Annu Rev Immunol. 2013; 31: 387 â 411.
dc.identifier.citedreferenceBonney EA. Immune regulation in pregnancy: a matter of perspective?. Obstet Gynecol Clin North Am. 2016; 43: 679 â 698.
dc.identifier.citedreferenceHsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4+ T cells through ILâ 12 produced by Listeriaâ induced macrophages. Science. 1993; 260: 547 â 549.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.