Show simple item record

A boundary current drives synchronous growth of marine fishes across tropical and temperate latitudes

dc.contributor.authorOng, Joyce J. L.
dc.contributor.authorRountrey, Adam N.
dc.contributor.authorBlack, Bryan A.
dc.contributor.authorNguyen, Hoang Minh
dc.contributor.authorCoulson, Peter G.
dc.contributor.authorNewman, Stephen J.
dc.contributor.authorWakefield, Corey B.
dc.contributor.authorMeeuwig, Jessica J.
dc.contributor.authorMeekan, Mark G.
dc.date.accessioned2018-04-04T18:54:33Z
dc.date.available2019-07-01T14:52:17Zen
dc.date.issued2018-05
dc.identifier.citationOng, Joyce J. L.; Rountrey, Adam N.; Black, Bryan A.; Nguyen, Hoang Minh; Coulson, Peter G.; Newman, Stephen J.; Wakefield, Corey B.; Meeuwig, Jessica J.; Meekan, Mark G. (2018). "A boundary current drives synchronous growth of marine fishes across tropical and temperate latitudes." Global Change Biology 24(5): 1894-1903.
dc.identifier.issn1354-1013
dc.identifier.issn1365-2486
dc.identifier.urihttps://hdl.handle.net/2027.42/142953
dc.description.abstractEntrainment of growth patterns of multiple species to single climatic drivers can lower ecosystem resilience and increase the risk of species extinction during stressful climatic events. However, predictions of the effects of climate change on the productivity and dynamics of marine fishes are hampered by a lack of historical data on growth patterns. We use otolith biochronologies to show that the strength of a boundary current, modulated by the El Niño‐Southern Oscillation, accounted for almost half of the shared variance in annual growth patterns of five of six species of tropical and temperate marine fishes across 23° of latitude (3000 km) in Western Australia. Stronger flow during La Niña years drove increased growth of five species, whereas weaker flow during El Niño years reduced growth. Our work is the first to link the growth patterns of multiple fishes with a single oceanographic/climate phenomenon at large spatial scales and across multiple climate zones, habitat types, trophic levels and depth ranges. Extreme La Niña and El Niño events are predicted to occur more frequently in the future and these are likely to have implications for these vulnerable ecosystems, such as a limited capacity of the marine taxa to recover from stressful climatic events.Understanding how fish respond to climate changes is crucial for predicting future impacts. We examined the growth records of six species of marine fishes from different thermal ranges, habitats and trophic levels, along 3000 km of coastline in Western Australia. We found that five of the six species had similar growth responses to a large‐scale climate phenomenon that drove the strength of the local current. This implies that multiple species across large spatial scales will be simultaneously affected by extreme climate events, which has major consequences for the resilience of the ecosystem and its ability to recover from extreme events.
dc.publisherR Foundation for Statistical Computing
dc.publisherWiley Periodicals, Inc.
dc.subject.otherboundary current
dc.subject.othergrowth chronologies
dc.subject.othermarine fishes
dc.subject.otherWestern Australia
dc.subject.otherEl Niño‐Southern Oscillation
dc.titleA boundary current drives synchronous growth of marine fishes across tropical and temperate latitudes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142953/1/gcb14083.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142953/2/gcb14083_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142953/3/gcb14083-sup-0001-SupInfo.pdf
dc.identifier.doi10.1111/gcb.14083
dc.identifier.sourceGlobal Change Biology
dc.identifier.citedreferenceOng, J. J. L., Rountrey, A. N., Meeuwig, J. J., Newman, S. J., Zinke, J., & Meekan, M. G. ( 2015 ). Contrasting environmental drivers of adult and juvenile growth in a marine fish: Implications for the effects of climate change. Scientific Reports, 5, 10859. https://doi.org/10.1038/srep10859
dc.identifier.citedreferenceMegrey, B. A., Hare, J. A., Stockhausen, W. T., Dommasnes, A., Gjøsæter, H., Overholtz, W., … Friedland, K. D. ( 2009 ). A cross‐ecosystem comparison of spatial and temporal patterns of covariation in the recruitment of functionally analogous fish stocks. Progress in Oceanography, 81, 63 – 92. https://doi.org/10.1016/j.pocean.2009.04.006
dc.identifier.citedreferenceMeyers, G., Mcintosh, P., Pigot, L., & Pook, M. ( 2007 ). The Years of El Niño, La Niña, and Interactions with the Tropical Indian Ocean. Journal of Climate, 20, 2872 – 2880. https://doi.org/10.1175/jcli4152.1
dc.identifier.citedreferenceMorrongiello, J. R., & Thresher, R. E. ( 2015 ). A statistical framework to explore ontogenetic growth variation among individuals and populations: A marine fish example. Ecological Monographs, 85, 93 – 115. https://doi.org/10.1890/13-2355.1
dc.identifier.citedreferenceMorrongiello, J. R., Thresher, R. E., & Smith, D. C. ( 2012 ). Aquatic biochronologies and climate change. Nature Climate Change, 2, 849 – 857. https://doi.org/10.1038/nclimate1616
dc.identifier.citedreferenceMunday, P. L., Jones, G. P., Pratchett, M. S., & Williams, A. J. ( 2008 ). Climate change and the future for coral reef fishes. Fish and Fisheries, 9, 261 – 285. https://doi.org/10.1111/j.1467-2979.2008.00281.x
dc.identifier.citedreferenceNeuheimer, A. B., Thresher, R. E., Lyle, J. M., & Semmens, J. M. ( 2011 ). Tolerance limit for fish growth exceeded by warming waters. Nature Climate Change, 1, 110 – 113. https://doi.org/10.1038/nclimate1084
dc.identifier.citedreferenceNewman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di Lorenzo, E., … Schneider, N. ( 2016 ). The Pacific Decadal Oscillation, Revisited. Journal of Climate, 29, 4399 – 4427. https://doi.org/10.1175/jcli-d-15-0508.1
dc.identifier.citedreferenceNewman, M., Compo, G. P., & Alexander, M. A. ( 2003 ). ENSO‐Forced Variability of the Pacific Decadal Oscillation. Journal of Climate, 16, 3853 – 3857. https://doi.org/10.1175/1520-0442(2003)016<3853:evotpd>2.0.co;2
dc.identifier.citedreferenceNguyen, H. M., Rountrey, A. N., Meeuwig, J. J., Coulson, P. G., Feng, M., Newman, S. J., Meekan, M. G. ( 2015 ). Growth of a deep‐water, predatory fish is influenced by the productivity of a boundary current system. Scientific Reports, 5, 9044. https://doi.org/10.1038/srep09044
dc.identifier.citedreferenceOng, J. J., Rountrey, A. N., Zinke, J., Meeuwig, J. J., Grierson, P. F., O’donnell, A. J., … Meekan, M. G. ( 2016 ). Evidence for climate‐driven synchrony of marine and terrestrial ecosystems in northwest Australia. Global Change Biology, 22, 2776 – 2786. https://doi.org/10.1111/gcb.13239
dc.identifier.citedreferencePearce, A., Lenanton, R., Jackson, G., Moore, J., Feng, M., & Gaughan, D. ( 2011 ) The ‘marine heat wave’ off Western Australia during the summer of 2010/11. In: Fisheries Research Report No. 222. pp Page, Western Australia, Department of Fisheries.
dc.identifier.citedreferencePoloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., … Duarte, C. M. ( 2013 ). Global imprint of climate change on marine life. Nature Climate Change, 3, 919 – 925. https://doi.org/10.1038/nclimate1958
dc.identifier.citedreferencePörtner, H. O., & Peck, M. A. ( 2010 ). Climate change effects on fishes and fisheries: Towards a cause‐and‐effect understanding. Journal of Fish Biology, 77, 1745 – 1779. https://doi.org/10.1111/j.1095-8649.2010.02783.x
dc.identifier.citedreferenceR Core Team. ( 2015 ). R: A language and environment for statistical computing. version 3.1.3. Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.R-project.org/ (accessed 1 June 2013).
dc.identifier.citedreferenceRountrey, A. N., Coulson, P. G., Meeuwig, J. J., & Meekan, M. G. ( 2014 ). Water temperature and fish growth: Otoliths predict growth patterns of a marine fish in a changing climate. Global Change Biology, 20, 2450 – 2458. https://doi.org/10.1111/gcb.12617
dc.identifier.citedreferenceRowell, K., Flessa, K. W., Dettman, D. L., Román, M. J., Gerber, L. R., & Findley, L. T. ( 2008 ). Diverting the Colorado River leads to a dramatic life history shift in an endangered marine fish. Biological Conservation, 141, 1138 – 1148. https://doi.org/10.1016/j.biocon.2008.02.013
dc.identifier.citedreferenceSchindler, D. E., Hilborn, R., Chasco, B., Boatright, C. P., Quinn, T. P., Rogers, L. A., & Webster, M. S. ( 2010 ). Population diversity and the portfolio effect in an exploited species. Nature, 465, 609 – 612. https://doi.org/10.1038/nature09060
dc.identifier.citedreferenceShakun, J. D., & Shaman, J. C. L. ( 2009 ). Tropical origins of North and South Pacific decadal variability. Geophysical Research Letters, 36, L19711. https://doi.org/10.1029/2009gl040313
dc.identifier.citedreferenceSilverstein, R. N., Correa, A. M. S., Lajeunesse, T. C., & Baker, A. C. ( 2011 ). Novel algal symbiont ( Symbiodinium spp.) diversity in reef corals of Western Australia. Marine Ecology Progress Series, 422, 63 – 75. https://doi.org/10.3354/meps08934
dc.identifier.citedreferenceSleeman, J. C., Meekan, M. G., Fitzpatrick, B. J., Steinberg, C. R., Ancel, R., & Bradshaw, C. J. A. ( 2010 ). Oceanographic and atmospheric phenomena influence the abundance of whale sharks at Ningaloo Reef, Western Australia. Journal of Experimental Marine Biology and Ecology, 382, 77 – 81. https://doi.org/10.1016/j.jembe.2009.10.015
dc.identifier.citedreferenceStocks, J., Stewart, J., Gray, C. A., & West, R. J. ( 2011 ). Using otolith increment widths to infer spatial, temporal and gender variation in the growth of sand whiting Sillago ciliata. Fisheries Management and Ecology, 18, 121 – 131. https://doi.org/10.1111/j.1365-2400.2010.00761.x
dc.identifier.citedreferenceThresher, R. E., Koslow, J. A., Morison, A. K., & Smith, D. C. ( 2007 ). Depth‐mediated reversal of the effects of climate change on long‐term growth rates of exploited marine fish. Proceedings of the National Academy of Sciences, 104, 7461 – 7465. https://doi.org/10.1073/pnas.0610546104
dc.identifier.citedreferenceVasseur, D. A., & Gaedke, U. ( 2007 ). Spectral analysis unmasks synchronous and compensatory dynamics in plankton communities. Ecology, 88, 2058 – 2071. https://doi.org/10.1890/06-1899.1
dc.identifier.citedreferenceWang, B., Wu, R., & Li, T. ( 2003 ). Atmosphere‐Warm Ocean Interaction and Its Impacts on Asian‐Australian Monsoon Variation. Journal of Climate, 16, 1195 – 1211. https://doi.org/10.1175/1520-0442(2003)16<1195:aoiaii>2.0.co;2
dc.identifier.citedreferenceWernberg, T., Smale, D. A., Tuya, F., Thomsen, M. S., Langlois, T. J., De Bettignies, T., Rousseaux, C. S. ( 2013 ). An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 3, 78 – 82. https://doi.org/10.1038/nclimate1627
dc.identifier.citedreferenceWigley, T. M. L., Briffa, K. R., & Jones, P. D. ( 1984 ). On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology, 23, 201 – 213. https://doi.org/10.1175/1520-0450(1984)023<0201:otavoc>2.0.co;2
dc.identifier.citedreferenceWilson, B. ( 2013 ). The Biogeography of the Australian North West Shelf: Environmental change and life’s response. Perth, Australia: Western Australian Museum.
dc.identifier.citedreferenceZinke, J., Rountrey, A., Feng, M., Xie, S. P., Dissard, D., Rankenburg, K., McCulloch, M. T. ( 2014 ). Corals record long‐term Leeuwin current variability including Ningaloo Niño/Niña since 1975. Nature Communications, 5, 3607.
dc.identifier.citedreferenceBakun, A., Black, B. A., Bograd, S. J., García‐Reyes, M., Miller, A. J., Rykaczewski, R. R., & Sydeman, W. J. ( 2015 ). Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems. Current Climate Change Reports, 1, 85 – 93. https://doi.org/10.1007/s40641-015-0008-4
dc.identifier.citedreferenceBarton, K. ( 2015 ). Multi‐model inference. R package R package version 1.13.4. Available at: http://CRAN.R-project.org/package=MuMIn (accessed 17 April 2015).
dc.identifier.citedreferenceBlack, B. A. ( 2009 ). Climate‐driven synchrony across tree, bivalve, and rockfish growth‐increment chronologies of the northeast Pacific. Marine Ecology Progress Series, 378, 37 – 46. https://doi.org/10.3354/meps07854
dc.identifier.citedreferenceBlack, B. A., Boehlert, G. W., & Yoklavich, M. M. ( 2008 ). Establishing climate‐growth relationships for yelloweye rockfish (Sebastes ruberrimus ) in the northeast Pacific using a dendrochronological approach. Fisheries Oceanography, 17, 368 – 379. https://doi.org/10.1111/j.1365-2419.2008.00484.x
dc.identifier.citedreferenceBlack, B. A., Matta, M. E., Helser, T. E., & Wilderbuer, T. K. ( 2013 ). Otolith biochronologies as multidecadal indicators of body size anomalies in yellowfin sole ( Limanda aspera ). Fisheries Oceanography, 22, 523 – 532.
dc.identifier.citedreferenceBlack, B. A., Sydeman, W. J., Frank, D. C., Griffin, D., Stahle, D. W., García‐Reyes, M., … Peterson, W. T. ( 2014 ). Six centuries of variability and extremes in a coupled marine‐terrestrial ecosystem. Science, 345, 1498 – 1502. https://doi.org/10.1126/science.1253209
dc.identifier.citedreferenceBunn, A. G. ( 2008 ). A dendrochronology program library in R (dplR). Dendrochronologia, 26, 115 – 124. https://doi.org/10.1016/j.dendro.2008.01.002
dc.identifier.citedreferenceBurnham, K. P., & Anderson, D. R. ( 2004 ). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods & Research, 33, 261 – 304. https://doi.org/10.1177/0049124104268644
dc.identifier.citedreferenceCai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., England, M. H. ( 2014 ). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4, 111 – 116. https://doi.org/10.1038/nclimate2100
dc.identifier.citedreferenceCai, W., Wang, G., Santoso, A., McPhaden, M. J., Wu, L., Jin, F. F., England, M. H. ( 2015 ). Increasing frequency of extreme La Niña events under greenhouse warming. Nature Climate Change, 5, 132 – 137. https://doi.org/10.1038/nclimate2492
dc.identifier.citedreferenceCaputi, N. ( 2008 ). Impact of the Leeuwin Current on the spatial distribution of the puerulus settlement of the western rock lobster ( Panulirus cygnus ) and implications for the fishery of Western Australia. Fisheries Oceanography, 17, 147 – 152. https://doi.org/10.1111/j.1365-2419.2008.00471.x
dc.identifier.citedreferenceCaputi, N., Fletcher, W. J., Pearce, A., & Chubb, C. F. ( 1996 ). Effect of the Leeuwin Current on the recruitment of fish and invertebrates along the Western Australian coast. Marine and Freshwater Research, 47, 147 – 155. https://doi.org/10.1071/mf9960147
dc.identifier.citedreferenceCaputi, N., Kangas, M., Denham, A., Feng, M., Pearce, A., Hetzel, Y., & Chandrapavan, A. ( 2016 ). Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecology and Evolution, 6, 3583 – 3593. https://doi.org/10.1002/ece3.2137
dc.identifier.citedreferenceChavez, F. P., Ryan, J., Lluch‐Cota, S. E., Ñiquen, C. M. ( 2003 ). From Anchovies to Sardines and Back: multidecadal Change in the Pacific Ocean. Science, 299, 217 – 221. https://doi.org/10.1126/science.1075880
dc.identifier.citedreferenceChen, X., & Wallace, J. M. ( 2015 ). ENSO‐Like Variability: 1900–2013. Journal of Climate, 28, 9623 – 9641. https://doi.org/10.1175/jcli-d-15-0322.1
dc.identifier.citedreferenceCheung, W. W., Sarmiento, J. L., Dunne, J., Frölicher, T. L., Lam, V. W., Palomares, M. D., … Pauly, D. ( 2013 ). Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change, 3, 254 – 258. https://doi.org/10.1038/nclimate1691
dc.identifier.citedreferenceCollins, L. B., Zhu, Z. R., Wyrwoll, K. H., Hatcher, B. G., Playford, P. E., Chen, J. H., … Wasserburg, G. J. ( 1993 ). Late Quaternary evolution of coral reefs on a cool‐water carbonate margin: The Abrolhos Carbonate Platforms, southwest Australia. Marine Geology, 110, 203 – 212. https://doi.org/10.1016/0025-3227(93)90085-a
dc.identifier.citedreferenceCoulson, P. G., Black, B. A., Potter, I. C., & Hall, N. G. ( 2014 ). Sclerochronological studies reveal that patterns of otolith growth of adults of two co‐occurring species of Platycephalidae are synchronised by water temperature variations. Marine Biology, 161, 383 – 393. https://doi.org/10.1007/s00227-013-2343-0
dc.identifier.citedreferenceCoulson, P. G., Potter, I. C., & Hall, N. G. ( 2012 ). The biological characteristics of Scorpis aequipinnis (Kyphosidae), including relevant comparisons with those of other species and particularly of a heavily exploited congener. Fisheries Research, 125–126, 272 – 282. https://doi.org/10.1016/j.fishres.2012.02.031
dc.identifier.citedreferenceD’Adamo, N., Fandry, C., Buchan, S., & Domingues, C. ( 2009 ). Northern sources of the Leeuwin current and the “Holloway Current” on the North West Shelf. Journal of the Royal Society of Western Australia, 92, 53 – 66.
dc.identifier.citedreferenceDefriez, E. J., Sheppard, L. W., Reid, P. C., & Reuman, D. C. ( 2016 ). Climate change‐related regime shifts have altered spatial synchrony of plankton dynamics in the North Sea. Global Change Biology, 22, 2069 – 2080. https://doi.org/10.1111/gcb.13229
dc.identifier.citedreferenceDepczynski, M., Gilmour, J. P., Ridgway, T., Barnes, H., Heyward, A. J., Holmes, T. H., Wilson, K. ( 2013 ). Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs, 32, 233 – 238. https://doi.org/10.1007/s00338-012-0974-0
dc.identifier.citedreferenceFeng, M., Mcphaden, M. J., Xie, S. P., & Hafner, J. ( 2013 ). La Niña forces unprecedented Leeuwin Current warming in 2011. Scientific Reports, 3, 1277. https://doi.org/10.1038/srep01277
dc.identifier.citedreferenceFeng, M., Meyers, G., Pearce, A., & Wijffels, S. ( 2003 ). Annual and interannual variations of the Leeuwin Current at 32°S. Journal of Geophysical Research: Oceans, 108, 3355. https://doi.org/10.1029/2002jc001763
dc.identifier.citedreferenceFeng, M., Waite, A. M., & Thompson, P. A. ( 2009 ). Climate variability and ocean production in the Leeuwin Current system off the west coast of Western Australia. Journal of the Royal Society of Western Australia, 92, 67 – 81.
dc.identifier.citedreferenceFletcher, W., Mumme, M., & Webster, F. ( 2017 ). Status reports of the Fisheries and Aquatic Resources of Western Australia 2015/2016: The state of the Fisheries. pp Page, Western Australia, Department of Fisheries.
dc.identifier.citedreferenceFordham, D. A., Mellin, C., Russell, B. D., Akçakaya, R. H., Bradshaw, C. J., Aiello‐Lammens, M. E., … Brook, B. W. ( 2013 ). Population dynamics can be more important than physiological limits for determining range shifts under climate change. Global Change Biology, 19, 3224 – 3237. https://doi.org/10.1111/gcb.12289
dc.identifier.citedreferenceFrank, K. T., Petrie, B., Leggett, W. C., & Boyce, D. G. ( 2016 ). Large scale, synchronous variability of marine fish populations driven by commercial exploitation. Proceedings of the National Academy of Sciences, 113, 8248 – 8253. https://doi.org/10.1073/pnas.1602325113
dc.identifier.citedreferenceFréon, P., Arístegui, J., Bertrand, A., Crawford, R. J., Field, J. C., Gibbons, M. J., … Ramdani, M. ( 2009 ). Functional group biodiversity in Eastern Boundary Upwelling Ecosystems questions the wasp‐waist trophic structure. Progress in Oceanography, 83, 97 – 106. https://doi.org/10.1016/j.pocean.2009.07.034
dc.identifier.citedreferenceGarcía‐Reyes, M., Sydeman, W. J., Schoeman, D. S., Rykaczewski, R. R., Black, B. A., Smit, A. J., & Bograd, S. J. ( 2015 ). Under pressure: Climate change, upwelling, and eastern boundary upwelling ecosystems. Frontiers in Marine Science, 2, 109.
dc.identifier.citedreferenceGillanders, B. M., Black, B. A., Meekan, M. G., & Morrison, M. A. ( 2012 ). Climatic effects on the growth of a temperate reef fish from the Southern Hemisphere: A biochronological approach. Marine Biology, 159, 1327 – 1333. https://doi.org/10.1007/s00227-012-1913-x
dc.identifier.citedreferenceHarley, C. D., Randall Hughes, A., Hultgren, K. M., Miner, B. G., Sorte, C. J., Thornber, C. S., … Williams, S. L. ( 2006 ). The impacts of climate change in coastal marine systems. Ecology Letters, 9, 228 – 241. https://doi.org/10.1111/j.1461-0248.2005.00871.x
dc.identifier.citedreferenceHelser, T. E., Lai, H.‐L., & Black, B. A. ( 2012 ). Bayesian hierarchical modeling of Pacific geoduck growth increment data and climate indices. Ecological Modelling, 247, 210 – 220. https://doi.org/10.1016/j.ecolmodel.2012.08.024
dc.identifier.citedreferenceHendon, H. H., & Wang, G. ( 2010 ). Seasonal prediction of the Leeuwin Current using the POAMA dynamical seasonal forecast model. Climate Dynamics, 34, 1129 – 1137. https://doi.org/10.1007/s00382-009-0570-3
dc.identifier.citedreferenceHoegh‐Guldberg, O., & Bruno, J. F. ( 2010 ). The impact of climate change on the world’s marine ecosystems. Science, 328, 1523 – 1528. https://doi.org/10.1126/science.1189930
dc.identifier.citedreferenceHolloway, P., & Nye, H. ( 1985 ). Leeuwin current and wind distributions on the southern part of the Australian North West Shelf between January 1982 and July 1983. Marine and Freshwater Research, 36, 123 – 137. https://doi.org/10.1071/mf9850123
dc.identifier.citedreferenceIzzo, C., Doubleday, Z. A., Grammer, G. L., Barnes, T. C., Delean, S., Ferguson, G. J., Gillanders, B. M. ( 2016 ). Multi‐species response to rapid environmental change in a large estuary system: A biochronological approach. Ecological Indicators, 69, 739 – 748. https://doi.org/10.1016/j.ecolind.2016.05.019
dc.identifier.citedreferenceKilduff, D. P., Di Lorenzo, E., Botsford, L. W., & Teo, S. L. H. ( 2015 ). Changing central Pacific El Niños reduce stability of North American salmon survival rates. Proceedings of the National Academy of Sciences, 112, 10962 – 10966. https://doi.org/10.1073/pnas.1503190112
dc.identifier.citedreferenceKoslow, J. A., Pesant, S., Feng, M., Pearce, A., Fearns, P., Moore, T., … Waite, A. ( 2008 ). The effect of the Leeuwin Current on phytoplankton biomass and production off Southwestern Australia. Journal of Geophysical Research: Oceans, 113, C07050.
dc.identifier.citedreferenceLehodey, P., Alheit, J., Barange, M., Baumgartner, T., Beaugrand, G., Drinkwater, K., … Roy, C. ( 2006 ). Climate Variability, Fish, and Fisheries. Journal of Climate, 19, 5009 – 5030. https://doi.org/10.1175/jcli3898.1
dc.identifier.citedreferenceMaxwell, J., & Cresswell, G. ( 1981 ). Dispersal of tropical marine fauna to the Great Australian Bight by the Leeuwin Current. Marine and Freshwater Research, 32, 493 – 500. https://doi.org/10.1071/mf9810493
dc.identifier.citedreferenceMclaughlin, J. F., Hellmann, J. J., Boggs, C. L., & Ehrlich, P. R. ( 2002 ). The route to extinction: Population dynamics of a threatened butterfly. Oecologia, 132, 538 – 548. https://doi.org/10.1007/s00442-002-0997-2
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.