Show simple item record

A nomogram incorporating six easily obtained parameters to discriminate intrahepatic cholangiocarcinoma and hepatocellular carcinoma

dc.contributor.authorWang, Mengmeng
dc.contributor.authorGao, Yuzhen
dc.contributor.authorFeng, Huijuan
dc.contributor.authorWarner, Elisa
dc.contributor.authorAn, Mingrui
dc.contributor.authorJia, Jian’an
dc.contributor.authorChen, Shipeng
dc.contributor.authorFang, Meng
dc.contributor.authorJi, Jun
dc.contributor.authorGu, Xing
dc.contributor.authorGao, Chunfang
dc.date.accessioned2018-04-04T18:58:09Z
dc.date.available2019-05-13T14:45:28Zen
dc.date.issued2018-03
dc.identifier.citationWang, Mengmeng; Gao, Yuzhen; Feng, Huijuan; Warner, Elisa; An, Mingrui; Jia, Jian’an; Chen, Shipeng; Fang, Meng; Ji, Jun; Gu, Xing; Gao, Chunfang (2018). "A nomogram incorporating six easily obtained parameters to discriminate intrahepatic cholangiocarcinoma and hepatocellular carcinoma." Cancer Medicine 7(3): 646-654.
dc.identifier.issn2045-7634
dc.identifier.issn2045-7634
dc.identifier.urihttps://hdl.handle.net/2027.42/142986
dc.description.abstractIntrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC) are the most prevalent histologic types of primary liver cancer (PLC). Although ICC and HCC share similar risk factors and clinical manifestations, ICC usually bears poorer prognosis than HCC. Confidently discriminating ICC and HCC before surgery is beneficial to both treatment and prognosis. Given the lack of effective differential diagnosis biomarkers and methods, construction of models based on available clinicopathological characteristics is in need. Nomograms present a simple and efficient way to make a discrimination. A total of 2894 patients who underwent surgery for PLC were collected. Of these, 1614 patients formed the training cohort for nomogram construction, and thereafter, 1280 patients formed the validation cohort to confirm the model’s performance. Histopathologically confirmed ICC was diagnosed in 401 (24.8%) and 296 (23.1%) patients in these two cohorts, respectively. A nomogram integrating six easily obtained variables (Gender, Hepatitis B surface antigen, Aspartate aminotransferase, Alpha‐fetoprotein, Carcinoembryonic antigen, Carbohydrate antigen 19‐9) is proposed in accordance with Akaike’s Information Criterion (AIC). A score of 15 was determined as the cut‐off value, and the corresponding discrimination efficacy was sufficient. Additionally, patients who scored higher than 15 suffered poorer prognosis than those with lower scores, regardless of the subtype of PLC. A nomogram for clinical discrimination of ICC and HCC has been established, where a higher score indicates ICC and poor prognosis. Further application of this nomogram in multicenter investigations may confirm the practicality of this tool for future clinical use.Confidently discriminating ICC and HCC before surgery can improve both treatment and prognosis. The authors have used a large‐scale study to construct a simple nomogram model incorporating six easily obtained parameters, which demonstrates high accuracy (AUC >0.85) when compared with clinical histologic examination.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhepatocellular carcinoma
dc.subject.otherintrahepatic cholangiocarcinoma
dc.subject.othernomogram
dc.subject.otherDifferential diagnosis model
dc.titleA nomogram incorporating six easily obtained parameters to discriminate intrahepatic cholangiocarcinoma and hepatocellular carcinoma
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelHematology and Oncology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142986/1/cam41341.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142986/2/cam41341_am.pdf
dc.identifier.doi10.1002/cam4.1341
dc.identifier.sourceCancer Medicine
dc.identifier.citedreferenceRizvi, S., and G. J. Gores. 2013. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 145: 1215 – 1229.
dc.identifier.citedreferencede Lope, C. R., S. Tremosini, A. Forner, M. Reig, and J. Bruix. 2012. Management of HCC. J. Hepatol. 56 ( Suppl 1 ): S75 – S87.
dc.identifier.citedreferenceBruix, J., M. Reig, and M. Sherman. 2016. Evidence‐based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology 150: 835 – 853.
dc.identifier.citedreferenceSpolverato, G., Y. Kim, S. Alexandrescu, I. Popescu, H. P. Marques, L. Aldrighetti, et al. 2015. Is hepatic resection for large or multifocal intrahepatic cholangiocarcinoma justified? results from a multi‐institutional collaboration. Ann. Surg. Oncol. 22: 2218 – 2225.
dc.identifier.citedreferenceSimo, K. A., L. E. Halpin, N. M. McBrier, J. A. Hessey, E. Baker, S. Ross, et al. 2016. Multimodality treatment of intrahepatic cholangiocarcinoma: a review. J. Surg. Oncol. 113: 62 – 83.
dc.identifier.citedreferenceYamamoto, M., and S. Ariizumi. 2011. Surgical outcomes of intrahepatic cholangiocarcinoma. Surg. Today 41: 896 – 902.
dc.identifier.citedreferenceBrychtova, V., V. Zampachova, R. Hrstka, P. Fabian, J. Novak, M. Hermanova, et al. 2014. Differential expression of anterior gradient protein 3 in intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Exp. Mol. Pathol. 96: 375 – 381.
dc.identifier.citedreferenceKim, Y. K., Y. M. Han, and C. S. Kim. 2009. Comparison of diffuse hepatocellular carcinoma and intrahepatic cholangiocarcinoma using sequentially acquired gadolinium‐enhanced and Resovist‐enhanced MRI. Eur. J. Radiol. 70: 94 – 100.
dc.identifier.citedreferenceVilana, R., A. Forner, L. Bianchi, A. Garcia‐Criado, J. Rimola, C. R. de Lope, et al. 2010. Intrahepatic peripheral cholangiocarcinoma in cirrhosis patients may display a vascular pattern similar to hepatocellular carcinoma on contrast‐enhanced ultrasound. Hepatology 51: 2020 – 2029.
dc.identifier.citedreferenceForner, A., J. M. Llovet, and J. Bruix. 2012. Hepatocellular carcinoma. Lancet 379: 1245 – 1255.
dc.identifier.citedreferenceRahnemai‐Azar, A. A., A. Weisbrod, M. Dillhoff, C. Schmidt, and T. M. Pawlik. 2017. Intrahepatic cholangiocarcinoma: molecular markers for diagnosis and prognosis. Surg. Oncol. 26: 125 – 137.
dc.identifier.citedreferenceLi, L., L. Che, K. M. Tharp, H. M. Park, M. G. Pilo, D. Cao, et al. 2016. Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans. Hepatology 63: 1900 – 1913.
dc.identifier.citedreferenceKim, R., J. M. Lee, C. I. Shin, E. S. Lee, J. H. Yoon, I. Joo, et al. 2016. Differentiation of intrahepatic mass‐forming cholangiocarcinoma from hepatocellular carcinoma on gadoxetic acid‐enhanced liver MR imaging. Eur. Radiol. 26: 1808 – 1817.
dc.identifier.citedreferenceZou, Q., J. Li, D. Wu, Z. Yan, X. Wan, K. Wang, et al. 2016. Nomograms for pre‐operative and post‐operative prediction of long‐term survival of patients who underwent repeat hepatectomy for recurrent hepatocellular carcinoma. Ann. Surg. Oncol. 23: 2618 – 2626.
dc.identifier.citedreferenceLei, Z., J. Li, D. Wu, Y. Xia, Q. Wang, A. Si, et al. 2016. Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus‐related hepatocellular carcinoma within the milan criteria. JAMA Surg. 151: 356 – 363.
dc.identifier.citedreferenceFerrone, C. R., M. W. Kattan, J. S. Tomlinson, S. P. Thayer, M. F. Brennan, and A. L. Warshaw. 2005. Validation of a postresection pancreatic adenocarcinoma nomogram for disease‐specific survival. J. Clin. Oncol. 23: 7529 – 7535.
dc.identifier.citedreferenceChen, P., B. Li, Y. Zhu, W. Chen, X. Liu, M. Li, et al. 2016. Establishment and validation of a prognostic nomogram for patients with resectable perihilar cholangiocarcinoma. Oncotarget 7: 37319 – 37330.
dc.identifier.citedreferenceAkaike, H. 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control 19: 716 – 723.
dc.identifier.citedreferenceMcGlynn, K. A., L. Tsao, A. W. Hsing, S. S. Devesa, and J. F. Fraumeni Jr. 2001. International trends and patterns of primary liver cancer. Int. J. Cancer 94: 290 – 296.
dc.identifier.citedreferenceZhou, X. D., Z. Y. Tang, J. Fan, J. Zhou, Z. Q. Wu, L. X. Qin, et al. 2009. Intrahepatic cholangiocarcinoma: report of 272 patients compared with 5,829 patients with hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 135: 1073 – 1080.
dc.identifier.citedreferenceKarakatsanis, A., I. Papaconstantinou, M. Gazouli, A. Lyberopoulou, G. Polymeneas, and D. Voros. 2013. Expression of microRNAs, miR‐21, miR‐31, miR‐122, miR‐145, miR‐146a, miR‐200c, miR‐221, miR‐222, and miR‐223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol. Carcinog. 52: 297 – 303.
dc.identifier.citedreferenceMurakami, Y., S. Kubo, A. Tamori, S. Itami, E. Kawamura, K. Iwaisako, et al. 2015. Comprehensive analysis of transcriptome and metabolome analysis in Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma. Sci. Rep. 5: 16294.
dc.identifier.citedreferenceLi, H., and C. Li. 2013. The CD79alpha (HM47/A9) antibody is effective in distinguishing between primary hepatocellular carcinoma and primary intrahepatic cholangiocarcinoma. Oncol. Lett. 5: 1195 – 1198.
dc.identifier.citedreferenceWennerberg, A. E., M. A. Nalesnik, and W. B. Coleman. 1993. Hepatocyte paraffin 1: a monoclonal antibody that reacts with hepatocytes and can be used for differential diagnosis of hepatic tumors. Am. J. Pathol. 143: 1050 – 1054.
dc.identifier.citedreferenceKumar, M., X. Zhao, and X. W. Wang. 2011. Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine? Cell Biosci. 1: 5.
dc.identifier.citedreferenceLu, Q., L. Y. Xue, W. P. Wang, B. J. Huang, and C. X. Li. 2015. Dynamic enhancement pattern of intrahepatic cholangiocarcinoma on contrast‐enhanced ultrasound: the correlation with cirrhosis and tumor size. Abdom. Imaging 40: 1558 – 1566.
dc.identifier.citedreferenceChong, Y. S., Y. K. Kim, M. W. Lee, S. H. Kim, W. J. Lee, H. C. Rhim, et al. 2012. Differentiating mass‐forming intrahepatic cholangiocarcinoma from atypical hepatocellular carcinoma using gadoxetic acid‐enhanced MRI. Clin. Radiol. 67: 766 – 773.
dc.identifier.citedreferenceShariat, S. F., U. Capitanio, C. Jeldres, and P. I. Karakiewicz. 2009. Can nomograms be superior to other prediction tools? BJU Int. 103: 492 – 495; discussion 5–7.
dc.identifier.citedreferenceShariat, S. F., P. I. Karakiewicz, N. Suardi, and M. W. Kattan. 2008. Comparison of nomograms with other methods for predicting outcomes in prostate cancer: a critical analysis of the literature. Clin. Cancer Res. 14: 4400 – 4407.
dc.identifier.citedreferenceSiegel, R. L., K. D. Miller, and A. Jemal. 2017. Cancer Statistics, 2017. CA Cancer J. Clin. 67: 7 – 30.
dc.identifier.citedreferenceRyerson, A. B., C. R. Eheman, S. F. Altekruse, J. W. Ward, A. Jemal, R. L. Sherman, et al. 2016. Annual Report to the Nation on the Status of Cancer, 1975‐2012, featuring the increasing incidence of liver cancer. Cancer 122: 1312 – 1337.
dc.identifier.citedreferenceYoon, Y. I., S. Hwang, Y. J. Lee, K. H. Kim, C. S. Ahn, D. B. Moon, et al. 2016. Postresection outcomes of combined hepatocellular carcinoma‐cholangiocarcinoma, hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Gastrointest. Surg. 20: 411 – 420.
dc.identifier.citedreferenceLafaro, K., M. S. Grandhi, J. M. Herman, and T. M. Pawlik. 2016. The importance of surgical margins in primary malignancies of the liver. J. Surg. Oncol. 113: 296 – 303.
dc.identifier.citedreferenceAl‐Bahrani, R., S. Nagamori, R. Leng, A. Petryk, and C. Sergi. 2015. Differential expression of sonic hedgehog protein in human hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Pathol. Oncol. Res. 21: 901 – 908.
dc.identifier.citedreferencePetrick, J. L., M. Braunlin, M. Laversanne, P. C. Valery, F. Bray, and K. A. McGlynn. 2016. International trends in liver cancer incidence, overall and by histologic subtype, 1978‐2007. Int. J. Cancer 139: 1534 – 1545.
dc.identifier.citedreferenceVitale, A., G. Spolverato, F. Bagante, F. Gani, I. Popescu, H. P. Marques, et al. 2016. A multi‐institutional analysis of elderly patients undergoing a liver resection for intrahepatic cholangiocarcinoma. J. Surg. Oncol. 113: 420 – 426.
dc.identifier.citedreferenceRazumilava, N., and G. J. Gores. 2014. Cholangiocarcinoma. Lancet 383: 2168 – 2179.
dc.identifier.citedreferenceBagante, F., G. Spolverato, A. Cucchetti, F. Gani, I. Popescu, A. Ruzzenente, et al. 2016. Defining when to offer operative treatment for intrahepatic cholangiocarcinoma: A regret‐based decision curves analysis. Surgery 160: 106 – 117.
dc.identifier.citedreferencede Jong, M. C., H. Nathan, G. C. Sotiropoulos, A. Paul, S. Alexandrescu, H. Marques, et al. 2011. Intrahepatic cholangiocarcinoma: an international multi‐institutional analysis of prognostic factors and lymph node assessment. J. Clin. Oncol. 29: 3140 – 3145.
dc.identifier.citedreferenceXue, T. C., B. H. Zhang, S. L. Ye, and Z. G. Ren. 2015. Differentially expressed gene profiles of intrahepatic cholangiocarcinoma, hepatocellular carcinoma, and combined hepatocellular‐cholangiocarcinoma by integrated microarray analysis. Tumour Biol. 36: 5891 – 5899.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.