Show simple item record

Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems

dc.contributor.authorYe, Christine J
dc.contributor.authorRegan, Sarah
dc.contributor.authorLiu, Guo
dc.contributor.authorAlemara, Sarah
dc.contributor.authorHeng, Henry H
dc.date.accessioned2018-05-13T03:29:30Z
dc.date.available2018-05-13T03:29:30Z
dc.date.issued2018-05-10
dc.identifier.citationMolecular Cytogenetics. 2018 May 10;11(1):31
dc.identifier.urihttps://doi.org/10.1186/s13039-018-0376-2
dc.identifier.urihttps://hdl.handle.net/2027.42/143540
dc.description.abstractAbstract Background In the past 15 years, impressive progress has been made to understand the molecular mechanism behind aneuploidy, largely due to the effort of using various -omics approaches to study model systems (e.g. yeast and mouse models) and patient samples, as well as the new realization that chromosome alteration-mediated genome instability plays the key role in cancer. As the molecular characterization of the causes and effects of aneuploidy progresses, the search for the general mechanism of how aneuploidy contributes to cancer becomes increasingly challenging: since aneuploidy can be linked to diverse molecular pathways (in regards to both cause and effect), the chances of it being cancerous is highly context-dependent, making it more difficult to study than individual molecular mechanisms. When so many genomic and environmental factors can be linked to aneuploidy, and most of them not commonly shared among patients, the practical value of characterizing additional genetic/epigenetic factors contributing to aneuploidy decreases. Results Based on the fact that cancer typically represents a complex adaptive system, where there is no linear relationship between lower-level agents (such as each individual gene mutation) and emergent properties (such as cancer phenotypes), we call for a new strategy based on the evolutionary mechanism of aneuploidy in cancer, rather than continuous analysis of various individual molecular mechanisms. To illustrate our viewpoint, we have briefly reviewed both the progress and challenges in this field, suggesting the incorporation of an evolutionary-based mechanism to unify diverse molecular mechanisms. To further clarify this rationale, we will discuss some key concepts of the genome theory of cancer evolution, including system inheritance, fuzzy inheritance, and cancer as a newly emergent cellular system. Conclusion Illustrating how aneuploidy impacts system inheritance, fuzzy inheritance and the emergence of new systems is of great importance. Such synthesis encourages efforts to apply the principles/approaches of complex adaptive systems to ultimately understand aneuploidy in cancer.
dc.titleUnderstanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems
dc.typeArticleen_US
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143540/1/13039_2018_Article_376.pdf
dc.language.rfc3066en
dc.rights.holderThe Author(s).
dc.date.updated2018-05-13T03:29:33Z
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.