Show simple item record

Comprehensive review of genetic factors contributing to head and neck squamous cell carcinoma development in low‐risk, nontraditional patients

dc.contributor.authorGingerich, Morgan A.
dc.contributor.authorSmith, Joshua D.
dc.contributor.authorMichmerhuizen, Nicole L.
dc.contributor.authorLudwig, Megan
dc.contributor.authorDevenport, Samantha
dc.contributor.authorMatovina, Chloe
dc.contributor.authorBrenner, Chad
dc.contributor.authorChinn, Steven B.
dc.date.accessioned2018-05-15T20:12:38Z
dc.date.available2019-07-01T14:52:17Zen
dc.date.issued2018-05
dc.identifier.citationGingerich, Morgan A.; Smith, Joshua D.; Michmerhuizen, Nicole L.; Ludwig, Megan; Devenport, Samantha; Matovina, Chloe; Brenner, Chad; Chinn, Steven B. (2018). "Comprehensive review of genetic factors contributing to head and neck squamous cell carcinoma development in low‐risk, nontraditional patients." Head & Neck 40(5): 943-954.
dc.identifier.issn1043-3074
dc.identifier.issn1097-0347
dc.identifier.urihttps://hdl.handle.net/2027.42/143606
dc.description.abstractBackgroundThe past 2 decades have seen an increased incidence of head and neck squamous cell carcinoma (HNSCC) in a nontraditional, low‐risk patient population (ie, ≤45 years of age, no substance use history), owing to a combination of human papillomavirus (HPV) infection and individual genetic variation.MethodsArticles positing genetic variants as contributing factors in HNSCC incidence in low‐risk, nontraditional patients were identified using a PubMed search, reviewed in detail, and concisely summarized herein.ResultsRecent data suggest that common polymorphisms in DNA repair enzymes, cell‐cycle control proteins, apoptotic pathway members, and Fanconi anemia‐associated genes likely modulate susceptibility to HNSCC development in low‐risk, nontraditional patients.ConclusionAt present, there is a lack of robust, comprehensive data on genetic drivers of oncogenesis in low‐risk patients and a clear need for further research on genetic alterations underlying the rising incidence of HNSCC in low‐risk, nontraditional patients.
dc.publisherWiley Periodicals, Inc.
dc.subject.othergenetics
dc.subject.otherhead and neck squamous cell carcinoma (HNSCC)
dc.subject.otherhereditary
dc.subject.otherpersonalized medicine
dc.subject.othergermline
dc.titleComprehensive review of genetic factors contributing to head and neck squamous cell carcinoma development in low‐risk, nontraditional patients
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOtolaryngology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143606/1/hed25057_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143606/2/hed25057.pdf
dc.identifier.doi10.1002/hed.25057
dc.identifier.sourceHead & Neck
dc.identifier.citedreferenceWhibley C, Pharoah PD, Hollstein M. p53 polymorphisms: cancer implications. Nat Rev Cancer. 2009; 9 ( 2 ): 95 ‐ 107.
dc.identifier.citedreferenceLu M, Liu Z, Yu H, et al. Combined effects of E2F1 and E2F2 polymorphisms on risk and early onset of squamous cell carcinoma of the head and neck. Mol Carcinog. 2012; 51 Suppl 1: E132 ‐ E141.
dc.identifier.citedreferenceYuan Y, Sturgis EM, Zhu L, et al. A functional variant at the miRNA binding site in E2F1 gene is associated with risk and tumor HPV16 status of oropharynx squamous cell carcinoma. Mol Carcinog. 2017; 56 ( 3 ): 1100 ‐ 1106.
dc.identifier.citedreferenceChaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011; 29 ( 32 ): 4294 ‐ 4301.
dc.identifier.citedreferenceD’Souza G, Kreimer AR, Viscidi R, et al. Case‐control study of human papillomavirus and oropharyngeal cancer. N Engl J Med. 2007; 356 ( 19 ): 1944 ‐ 1956.
dc.identifier.citedreferenceKreimer AR, Johansson M, Waterboer T, et al. Evaluation of human papillomavirus antibodies and risk of subsequent head and neck cancer. J Clin Oncol. 2013; 31 ( 21 ): 2708 ‐ 2715.
dc.identifier.citedreferenceAnderson KS, Dahlstrom KR, Cheng JN, et al. HPV16 antibodies as risk factors for oropharyngeal cancer and their association with tumor HPV and smoking status. Oral Oncol. 2015; 51 ( 7 ): 662 ‐ 667.
dc.identifier.citedreferenceWhite RA, Malkoski SP, Wang XJ. TGFβ signaling in head and neck squamous cell carcinoma. Oncogene. 2010; 29 ( 40 ): 5437 ‐ 5446.
dc.identifier.citedreferenceKaklamani VG, Baddi L, Liu J, et al. Combined genetic assessment of transforming growth factor‐beta signaling pathway variants may predict breast cancer risk. Cancer Res. 2005; 65 ( 8 ): 3454 ‐ 3461.
dc.identifier.citedreferenceMills KH, McGuirk P. Antigen‐specific regulatory T cells – their induction and role in infection. Semin Immunol. 2004; 16 ( 2 ): 107 ‐ 117.
dc.identifier.citedreferenceAlcocer‐González JM, Berumen J, Taméz‐Guerra R, et al. In vivo expression of immunosuppressive cytokines in human papillomavirus‐transformed cervical cancer cells. Viral Immunol. 2006; 19 ( 3 ): 481 ‐ 491.
dc.identifier.citedreferenceGuan X, Sturgis EM, Lei D, et al. Association of TGF‐beta1 genetic variants with HPV16‐positive oropharyngeal cancer. Clin Cancer Res. 2010; 16 ( 5 ): 1416 ‐ 1422.
dc.identifier.citedreferenceJin L, Sturgis EM, Zhang Y, et al. Association of tumor necrosis factor‐alpha promotor variants with risk of HPV‐associated oral squamous cell carcinoma. Mol Cancer. 2013; 12: 80.
dc.identifier.citedreferenceSong X, Sturgis EM, Liu J, et al. MicroRNA variants increase the risk of HPV‐associated squamous cell carcinomas of the oropharynx in never smokers. PLoS One. 2013; 8 ( 2 ): e56622.
dc.identifier.citedreferenceZhang Y, Sturgis EM, Sun Y, et al. A functional variant at miRNA‐122 binding site in IL‐1α 3′ UTR predicts risk and HPV‐positive tumours of oropharyngeal cancer. Eur J Cancer. 2015; 51 ( 11 ): 1415 ‐ 1423.
dc.identifier.citedreferenceLane DP. Cancer. p53, guardian of the genome. Nature. 1992; 358 ( 6381 ): 15 ‐ 16.
dc.identifier.citedreferenceJi X, Neumann AS, Sturgis EM, et al. p53 codon 72 polymorphism associated with risk of human papillomavirus‐associated squamous cell carcinoma of the oropharynx in never‐smokers. Carcinogenesis. 2008; 29 ( 4 ): 875 ‐ 879.
dc.identifier.citedreferenceChen X, Sturgis EM, Etzel CJ, Wei Q, Li G. p73 G4C14‐to‐A4T14 polymorphism and risk of human papillomavirus‐associated squamous cell carcinoma of the oropharynx in never smokers and never drinkers. Cancer. 2008; 113 ( 12 ): 3307 ‐ 3314.
dc.identifier.citedreferenceChen X, Sturgis EM, El‐Naggar AK, Wei Q, Li G. Combined effects of the p53 codon 72 and p73 G4C14‐to‐A4T14 polymorphisms on the risk of HPV16‐associated oral cancer in never‐smokers. Carcinogenesis. 2008; 29 ( 11 ): 2120 ‐ 2125.
dc.identifier.citedreferenceWang Z, Sturgis EM, Zhang Y, et al. Combined p53‐related genetic variants together with HPV infection increases oral cancer risk. Int J Cancer. 2012; 131 ( 3 ): E251 ‐ E258.
dc.identifier.citedreferenceWang Z, Sturgis EM, Guo W, et al. Association of combined p73 and p53 genetic variants with tumor HPV16‐positive oropharyngeal cancer. PLoS One. 2012; 7 ( 4 ): e35522.
dc.identifier.citedreferenceYu H, Sturgis EM, Liu Z, Wang LE, Wei Q, Li G. Modifying effect of MDM4 variants on risk of HPV16‐associated squamous cell carcinoma of oropharynx. Cancer. 2012; 118 ( 6 ): 1684 ‐ 1692.
dc.identifier.citedreferenceChen X, Sturgis EM, Lei D, Dahlstrom K, Wei Q, Li G. Human papillomavirus seropositivity synergizes with MDM2 variants to increase the risk of oral squamous cell carcinoma. Cancer Res. 2010; 70 ( 18 ): 7199 ‐ 7208.
dc.identifier.citedreferenceGomez‐Bougie P, Wuillème‐Toumi S, Ménoret E, et al. Noxa up‐regulation and Mcl‐1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma. Cancer Res. 2007; 67 ( 11 ): 5418 ‐ 5424.
dc.identifier.citedreferenceSkoda C, Erovic BM, Wachek V, et al. Down‐regulation of Mcl‐1 with antisense technology alters the effect of various cytotoxic agents used in treatment of squamous cell carcinoma of the head and neck. Oncol Rep. 2008; 19 ( 6 ): 1499 ‐ 1503.
dc.identifier.citedreferenceZhou Z, Sturgis EM, Liu Z, Wang LE, Wei Q, Li G. Genetic variants of NOXA and MCL1 modify the risk of HPV16‐associated squamous cell carcinoma of the head and neck. BMC Cancer. 2012; 12: 159.
dc.identifier.citedreferenceMorris LG, Chandramohan R, West L, et al. The molecular landscape of recurrent and metastatic head and neck cancers: insights from a precision oncology sequencing platform. JAMA Oncol. 2017; 3 ( 2 ): 244 ‐ 255.
dc.identifier.citedreferenceGlobal Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability‐adjusted life‐years for 32 cancer groups, 1990 to 2015: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol. 2017; 3 ( 4 ): 524 ‐ 548.
dc.identifier.citedreferenceBlot WJ, McLaughlin JK, Winn DM, et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 1988; 48 ( 11 ): 3282 ‐ 3287.
dc.identifier.citedreferenceHashibe M, Brennan P, Benhamou S, et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. J Natl Cancer Inst. 2007; 99 ( 10 ): 777 ‐ 789.
dc.identifier.citedreferenceBrennan JA, Mao L, Hruban RH, et al. Molecular assessment of histopathological staging in squamous‐cell carcinoma of the head and neck. N Engl J Med. 1995; 332 ( 7 ): 429 ‐ 435.
dc.identifier.citedreferenceCancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015; 517 ( 7536 ): 576 ‐ 582.
dc.identifier.citedreferenceGillison ML, Chaturvedi AK, Anderson WF, Fakhry C. Epidemiology of human papillomavirus‐positive head and neck squamous cell carcinoma. J Clin Oncol. 2015; 33 ( 29 ): 3235 ‐ 3242.
dc.identifier.citedreferenceMourad M, Jetmore T, Jategaonkar AA, Moubayed S, Moshier E, Urken ML. Epidemiological trends of head and neck cancer in the United States: a SEER population study. J Oral Maxillofac Surg. 2017; 75 ( 12 ): 2562 ‐ 2572.
dc.identifier.citedreferencePatel SC, Carpenter WR, Tyree S, et al. Increasing incidence of oral tongue squamous cell carcinoma in young white women, age 18 to 44 years. J Clin Oncol. 2011; 29 ( 11 ): 1488 ‐ 1494.
dc.identifier.citedreferenceHarris SL, Kimple RJ, Hayes DN, Couch ME, Rosenman JG. Never‐smokers, never‐drinkers: unique clinical subgroup of young patients with head and neck squamous cell cancers. Head Neck. 2010; 32 ( 4 ): 499 ‐ 503.
dc.identifier.citedreferenceZafereo ME, Xu L, Dahlstrom KR, et al. Squamous cell carcinoma of the oral cavity often overexpresses p16 but is rarely driven by human papillomavirus. Oral Oncol. 2016; 56: 47 ‐ 53.
dc.identifier.citedreferenceVerschuur HP, Irish JC, O’Sullivan B, Goh C, Gullane PJ, Pintilie M. A matched control study of treatment outcome in young patients with squamous cell carcinoma of the head and neck. Laryngoscope. 1999; 109 ( 2 Pt 1 ): 249 ‐ 258.
dc.identifier.citedreferenceToporcov TN, Znaor A, Zhang ZF, et al. Risk factors for head and neck cancer in young adults: a pooled analysis in the INHANCE consortium. Int J Epidemiol. 2015; 44 ( 1 ): 169 ‐ 185.
dc.identifier.citedreferenceHoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001; 411 ( 6835 ): 366 ‐ 374.
dc.identifier.citedreferenceHelleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008; 8 ( 3 ): 193 ‐ 204.
dc.identifier.citedreferenceHecht SS. Tobacco carcinogens, their biomarkers and tobacco‐induced cancer. Nat Rev Cancer. 2003; 3 ( 10 ): 733 ‐ 744.
dc.identifier.citedreferenceFlores‐Obando RE, Gollin SM, Ragin CC. Polymorphisms in DNA damage response genes and head and neck cancer risk. Biomarkers. 2010; 15 ( 5 ): 379 ‐ 399.
dc.identifier.citedreferenceLou Y, Peng WJ, Cao DS, Xie J, Li HH, Jiang ZX. DNA repair gene XRCC1 polymorphisms and head and neck cancer risk: an updated meta‐analysis including 16344 subjects. PLoS One. 2013; 8 ( 9 ): e74059.
dc.identifier.citedreferenceHu YY, Yuan H, Jiang GB, et al. Associations between XPD Asp312Asn polymorphism and risk of head and neck cancer: a meta‐analysis based on 7,122 subjects. PLoS One. 2012; 7 ( 4 ): e35220.
dc.identifier.citedreferenceMcKay JD, Truong T, Gaborieau V, et al. A genome‐wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium. PLoS Genet. 2011; 7 ( 3 ): e1001333.
dc.identifier.citedreferenceTafel AA, Wu L, McHugh PJ. Human HEL308 localizes to damaged replication forks and unwinds lagging strand structures. J Biol Chem. 2011; 286 ( 18 ): 15832 ‐ 15840.
dc.identifier.citedreferenceLiang C, Marsit CJ, Houseman EA, et al. Gene‐environment interactions of novel variants associated with head and neck cancer. Head Neck. 2012; 34 ( 8 ): 1111 ‐ 1118.
dc.identifier.citedreferenceYuan H, Ma H, Lu F, et al. Genetic variants at 4q23 and 12q24 are associated with head and neck cancer risk in China. Mol Carcinog. 2013; 52 Suppl 1: E2 ‐ E9.
dc.identifier.citedreferenceHanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144 ( 5 ): 646 ‐ 674.
dc.identifier.citedreferenceCotter TG. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer. 2009; 9 ( 7 ): 501 ‐ 507.
dc.identifier.citedreferenceAdams JM, Cory S. The Bcl‐2 apoptotic switch in cancer development and therapy. Oncogene. 2007; 26 ( 9 ): 1324 ‐ 1337.
dc.identifier.citedreferenceWang X, Simpson ER, Brown KA. p53: protection against tumor growth beyond effects on cell cycle and apoptosis. Cancer Res. 2015; 75 ( 23 ): 5001 ‐ 5007.
dc.identifier.citedreferenceStransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011; 333 ( 6046 ): 1157 ‐ 1160.
dc.identifier.citedreferenceMarin MC, Jost CA, Brooks LA, et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet. 2000; 25 ( 1 ): 47 ‐ 54.
dc.identifier.citedreferenceSullivan A, Syed N, Gasco M, et al. Polymorphism in wild‐type p53 modulates response to chemotherapy in vitro and in vivo. Oncogene. 2004; 23 ( 19 ): 3328 ‐ 3337.
dc.identifier.citedreferencePerrone F, Mariani L, Pastore E, et al. p53 codon 73 polymorphisms in human papillomavirus‐negative and human papillomavirus‐positive squamous cell carcinomas of the oropharynx. Cancer. 2007; 109 ( 12 ): 2461 ‐ 2465.
dc.identifier.citedreferenceBergamaschi D, Gasco M, Hiller L, et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73‐dependent apoptosis. Cancer Cell. 2003; 3 ( 4 ): 387 ‐ 402.
dc.identifier.citedreferenceHoque MO, Begum S, Sommer M, et al. PUMA in head and neck cancer. Cancer Lett. 2003; 199 ( 1 ): 75 ‐ 81.
dc.identifier.citedreferenceZhou Z, Sturgis EM, Liu Z, Wang LE, Wei Q, Li G. Genetic variants of a BH3‐only pro‐apoptotic gene, PUMA, and risk of HPV16‐associated squamous cell carcinoma of the head and neck. Mol Carcinog. 2012; 51 Suppl 1: E54 ‐ E64.
dc.identifier.citedreferenceVogt M, Butz K, Dymalla S, Semzow J, Hoppe‐Seyler F. Inhibition of Bax activity is crucial for the antiapoptotic function of the human papillomavirus E6 oncoprotein. Oncogene. 2006; 25 ( 29 ): 4009 ‐ 4015.
dc.identifier.citedreferenceWang X, Huang L, Xu Y, et al. Association between survivin ‐ 31G > C promotor polymorphism and cancer risk: a meta‐analysis. Eur J Hum Genet. 2012; 20 ( 7 ): 790 ‐ 795.
dc.identifier.citedreferenceKnauer SK, Unruhe B, Karczewski S, et al. Functional characterization of novel mutations affecting survivin (BIRC5)‐mediated therapy resistance in head and neck cancer patients. Hum Mutat. 2013; 34 ( 2 ): 395 ‐ 404.
dc.identifier.citedreferenceKonopka K, Spain C, Yen A, Overlid N, Gebremedhin S, Düzgüneş N. Correlation between the levels of survivin and survivin promotor‐driven gene expression in cancer and non‐cancer cells. Cell Mol Biol Lett. 2009; 14 ( 1 ): 70 ‐ 89.
dc.identifier.citedreferenceWeng CJ, Hsieh YH, Chen MK, Tsai CM, Lin CW, Yang SF. Survivin SNP‐carcinogen interactions in oral cancer. J Dent Res. 2012; 91 ( 4 ): 358 ‐ 363.
dc.identifier.citedreferenceMa F, Zhang H, Zhai Y, et al. Functional polymorphism ‐31C/G in the promoter of BIRC5 gene and risk of nasopharyngeal carcinoma among Chinese. PLoS One. 2011; 6 ( 2 ): e16748.
dc.identifier.citedreferenceNegri E, Boffetta P, Berthiller J, et al. Family history of cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Int J Cancer. 2009; 124 ( 2 ): 394 ‐ 401.
dc.identifier.citedreferencePotrony M, Puig‐Butillé JA, Aguilera P, et al. Increased prevalence of lung, breast and pancreatic cancers in addition to melanoma risk in families bearing the cyclin‐dependent kinase inhibitor 2A mutation: implications for genetic counseling. J Am Acad Dermatol. 2014; 71 ( 5 ): 888 ‐ 895.
dc.identifier.citedreferenceSoura E, Eliades PJ, Shannon K, Stratigos AJ, Tsao H. Hereditary melanoma: update on syndromes and management: emerging melanoma cancer complexes and genetic counseling. J Am Acad Dermatol. 2016; 74 ( 3 ): 411 ‐ 420; quiz 421‐422.
dc.identifier.citedreferenceCabanillas R, Astudillo A, Valle M, et al. Novel germline CDKN2A mutation associated with head and neck squamous cell carcinomas and melanomas. Head Neck. 2013; 35 ( 3 ): 80 ‐ 84.
dc.identifier.citedreferenceVinarsky V, Fine RL, Assaad A, et al. Head and neck squamous cell carcinoma in FAMMM syndrome. Head Neck. 2009; 31 ( 11 ): 1524 ‐ 1527.
dc.identifier.citedreferencePotjer TP, Kranenburg HE, Bergman W, et al. Prospective risk of cancer and the influence of tobacco use in carriers of the p16‐Leiden germline variant. Eur J Hum Genet. 2015; 23 ( 5 ): 711 ‐ 714.
dc.identifier.citedreferenceHelgadottir H, Höiom V, Jönsson G, et al. High risk of tobacco‐related cancers in CDKN2A mutation‐positive melanoma families. J Med Genet. 2014; 51 ( 8 ): 545 ‐ 552.
dc.identifier.citedreferenceGajwani BW, Devereaux JM, Beg JA. Familial clustering of nasopharyngeal carcinoma. Cancer. 1980; 46 ( 10 ): 2325 ‐ 2327.
dc.identifier.citedreferenceBei JX, Jia WH, Zeng YX. Familial and large‐scale case‐control studies identify genes associated with nasopharyngeal carcinoma. Semin Cancer Biol. 2012; 22 ( 2 ): 96 ‐ 106.
dc.identifier.citedreferenceXiong W, Zeng ZY, Xia JH, et al. A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res. 2004; 64 ( 6 ): 1972 ‐ 1974.
dc.identifier.citedreferenceWang AT, Smogorzewska A. Snapshot: Fanconi anemia and associated proteins. Cell. 2015; 160 ( 1‐2 ): 354 ‐ 354.e1.
dc.identifier.citedreferenceCeccaldi R, Sarangi P, D’Andrea AD. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol. 2016; 17 ( 6 ): 337 ‐ 349.
dc.identifier.citedreferenceGarner E, Smogorzewska A. Ubiquitylation and the Fanconi anemia pathway. FEBS Lett. 2011; 585 ( 18 ): 2853 ‐ 2860.
dc.identifier.citedreferenceMamrak NE, Shimamura A, Howell NG. Recent discoveries in the molecular pathogenesis of the inherited bone marrow failure syndrome Fanconi anemia. Blood Rev. 2017; 31 ( 3 ): 93 ‐ 99.
dc.identifier.citedreferenceKutler DI, Singh B, Satagopan J, et al. A 20‐year perspective on the International Fanconi Anemia Registry (IFAR). Blood. 2003; 101 ( 4 ): 1249 ‐ 1256.
dc.identifier.citedreferenceVelleuer E, Dietrich R. Fanconi anemia: young patients at high risk for squamous cell carcinoma. Mol Cell Pediatr. 2014; 1 ( 1 ): 9.
dc.identifier.citedreferenceKutler DI, Auerbach AD, Satagopan J, et al. High incidence of head and neck squamous cell carcinoma in patients with Fanconi anemia. Arch Otolaryngol Head Neck Surg. 2003; 129 ( 1 ): 106 ‐ 112.
dc.identifier.citedreferenceRomick‐Rosendale LE, Lui VW, Grandis JR, Wells SI. The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutat Res. 2013; 743‐744: 78 ‐ 88.
dc.identifier.citedreferenceTremblay S, Pintor Dos Reis P, Bradley G, et al. Young patients with oral squamous cell carcinoma: study of the involvement of GSTP1 and deregulation of the Fanconi anemia genes. Arch Otolaryngol Head Neck Surg. 2006; 132 ( 9 ): 958 ‐ 966.
dc.identifier.citedreferenceStoepker C, Ameziane N, van der Lelij, et al. Defects in the Fanconi Anemia pathway and chromatid cohesion in head and neck cancer. Cancer Res. 2015; 75 ( 17 ): 3543 ‐ 3553.
dc.identifier.citedreferenceSmith IM, Mithani SK, Mydlarz WK, Chang SS, Califano JA. Inactivation of the tumor suppressor genes causing the hereditary syndromes predisposing to head and neck cancer via promotor hypermethylation in sporadic head and neck cancers. ORL J Otorhinolaryngol Relat Spec. 2010; 72 ( 1 ): 44 ‐ 50.
dc.identifier.citedreferenceMarsit CJ, Liu M, Nelson HH, Posner M, Suzuki M, Kelsey KT. Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene. 2004; 23 ( 4 ): 1000 ‐ 1004.
dc.identifier.citedreferenceHoskins EE, Gunawardena RW, Habash KB, et al. Coordinate regulation of Fanconi anemia gene expression occurs through the Rb/E2F pathway. Oncogene. 2008; 27 ( 35 ): 4798 ‐ 4808.
dc.identifier.citedreferenceGarcia‐Higuera I, Taniguchi T, Ganesan S, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cel. 2001; 7 ( 2 ): 249 ‐ 262.
dc.identifier.citedreferenceD’Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer. 2003; 3 ( 1 ): 23 ‐ 34.
dc.identifier.citedreferenceGao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013; 6 ( 269 ): pl1.
dc.identifier.citedreferenceCerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012; 2 ( 5 ): 401 ‐ 404.
dc.identifier.citedreferencePolager S, Ginsberg D. E2F ‐ at the crossroads of life and death. Trends Cell Biol. 2008; 18 ( 11 ): 528 ‐ 535.
dc.identifier.citedreferencePolager S, Ginsberg D. p53 and E2f: partners in life and death. Nat Rev Cancer. 2009; 9 ( 10 ): 738 ‐ 748.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.