Show simple item record

Anthropogenic N deposition increases soil C storage by reducing the relative abundance of lignolytic fungi

dc.contributor.authorEntwistle, Elizabeth M.
dc.contributor.authorZak, Donald R.
dc.contributor.authorArgiroff, William A.
dc.date.accessioned2018-05-15T20:12:43Z
dc.date.available2019-07-01T14:52:17Zen
dc.date.issued2018-05
dc.identifier.citationEntwistle, Elizabeth M.; Zak, Donald R.; Argiroff, William A. (2018). "Anthropogenic N deposition increases soil C storage by reducing the relative abundance of lignolytic fungi." Ecological Monographs 88(2): 225-244.
dc.identifier.issn0012-9615
dc.identifier.issn1557-7015
dc.identifier.urihttps://hdl.handle.net/2027.42/143610
dc.description.abstractAtmospheric nitrogen (N) deposition has increased dramatically since preindustrial times and continues to increase across many regions of the Earth. In temperate forests, this agent of global change has increased soil carbon (C) storage, but the mechanisms underlying this response are not understood. One long‐standing hypothesis proposed to explain the accumulation of soil C proposes that higher inorganic N availability may suppress both the activity and abundance of fungi that decay lignin and other polyphenols in soil. In field studies, elevated rates of N deposition have reduced the activity of enzymes mediating lignin decay, but a decline in the abundance of lignolytic fungi has not been definitively documented to date. Here, we tested the hypothesis that elevated rates of anthropogenic N deposition reduce the abundance of lignolytic fungi. We conducted a field experiment in which we compared fungal communities colonizing low‐lignin, high‐lignin, and wood substrates in a northern hardwood forest that is part of a long‐term N deposition experiment. We reasoned that if lignolytic fungi decline under experimental N deposition, this effect should be most evident among fungi colonizing high‐lignin and wood substrates. Using molecular approaches, we provide evidence that anthropogenic N deposition reduces the relative abundance of lignolytic fungi on both wood and a high‐lignin substrate. Furthermore, experimental N deposition increased total fungal abundance on a low‐lignin substrate, reduced fungal abundance on wood, and had no significant effect on fungal abundance on a high‐lignin substrate. We simultaneously examined these responses in the surrounding soil and forest floor, in which we did not observe significant reductions in the relative abundance of lignolytic fungi or in the size of the fungal community; however, we did detect a change in community composition in the forest floor that appears to be driven by a shift away from lignolytic fungi and towards cellulolytic fungi. Our results provide direct evidence that reductions in the abundance of lignolytic fungi are part of the mechanism by which anthropogenic N deposition increases soil C storage.
dc.publisherWiley Periodicals, Inc.
dc.publisherPrimer‐E Ltd.
dc.subject.otherlignin
dc.subject.othernitrogen
dc.subject.othersoil organic matter
dc.subject.othersoil C
dc.subject.otherAgaricomycetes
dc.subject.otheratmospheric N deposition
dc.subject.otherdecomposition
dc.subject.otherforest
dc.subject.otherforest floor
dc.subject.otherfungal communities
dc.subject.otherfungi
dc.titleAnthropogenic N deposition increases soil C storage by reducing the relative abundance of lignolytic fungi
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143610/1/ecm1288-sup-0002-AppendixS2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143610/2/ecm1288-sup-0003-AppendixS3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143610/3/ecm1288-sup-0004-AppendixS4.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143610/4/ecm1288_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143610/5/ecm1288.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143610/6/ecm1288-sup-0001-AppendixS1.pdf
dc.identifier.doi10.1002/ecm.1288
dc.identifier.sourceEcological Monographs
dc.identifier.citedreferenceOtjen, L., and R. A. Blanchette. 1984. Xylobolus frustulatus decay of oak: patterns of selective delignification and subsequent cellulose removal. Applied and Environmental Microbiology 47: 670 – 676.
dc.identifier.citedreferenceRagnar, M., G. Henriksson, M. E. Lindström, M. Wimby, J. Blechschmidt, and S. Heinemann. 2000. Pulp. Ullmann’s encyclopedia of industrial chemistry. Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
dc.identifier.citedreferenceReiss, R., J. Ihssen, M. Richter, E. Eichhorn, B. Schilling, and L. Thöny‐Meyer. 2013. Laccase versus laccase‐like multi‐copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS ONE 8: e65633.
dc.identifier.citedreferenceRidge, J. P., M. Lin, E. I. Larsen, M. Fegan, A. G. McEwan, and L. I. Sly. 2007. A multicopper oxidase is essential for manganese oxidation and laccase‐like activity in Pedomicrobium sp. ACM 3067. Environmental Microbiology 9: 944 – 953.
dc.identifier.citedreferenceRoss, R. J. 2010. Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory, General Technical Report FPL‐GTR‐190.
dc.identifier.citedreferenceRuiz‐Duenas, F. J., T. Lundell, D. Floudas, L. G. Nagy, J. M. Barrasa, D. S. Hibbett, and A. T. Martínez. 2013. Lignin‐degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes. Mycologia 105: 1428 – 1444.
dc.identifier.citedreferenceSchloss, P. D., M. L. Jenior, C. C. Koumpouras, S. L. Westcott, and S. K. Highlander. 2016. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. PeerJ 4: e1869.
dc.identifier.citedreferenceSchloss, P. D., et al. 2009. Introducing mothur: open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537 – 7541.
dc.identifier.citedreferenceShah, F., C. Nicolás, J. Bentzer, M. Ellström, M. Smits, F. Rineau, B. Canbäck, D. Floudas, R. Carleer, and G. Lackner. 2015. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytologist 209: 1705 – 1719.
dc.identifier.citedreferenceSievers, F., et al. 2011. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7: 539.
dc.identifier.citedreferenceSinsabaugh, R. L. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry 42: 391 – 404.
dc.identifier.citedreferenceSinsabaugh, R. L., C. L. Lauber, M. N. Weintraub, B. Ahmed, S. D. Allison, C. Crenshaw, A. R. Contosta, D. Cusack, S. Frey, and M. E. Gallo. 2008. Stoichiometry of soil enzyme activity at global scale. Ecology Letters 11: 1252 – 1264.
dc.identifier.citedreferenceŠnajdr, J., K. T. Steffen, M. Hofrichter, and P. Baldrian. 2010. Transformation of 14C‐labelled lignin and humic substances in forest soil by the saprobic basidiomycetes Gymnopus erythropus and Hypholoma fasciculare. Soil Biology and Biochemistry 42: 1541 – 1548.
dc.identifier.citedreferenceSperanza, M., A. Gutierrez, J. C. del Rio, L. Bettucci, A. T. Martinez, and M. J. Martinez. 2009. Sterols and lignin in Eucalyptus globulus Labill. wood: spatial distribution and fungal removal as revealed by microscopy and chemical analyses. Holzforschung 63: 362 – 370.
dc.identifier.citedreferenceSteffen, K. T., T. Cajthaml, J. Snajdr, and P. Baldrian. 2007. Differential degradation of oak ( Quercus petraea ) leaf litter by litter‐decomposing basidiomycetes. Research in Microbiology 158: 447 – 455.
dc.identifier.citedreferenceTalbot, J. M., T. D. Bruns, D. P. Smith, S. Branco, S. I. Glassman, S. Erlandson, R. Vilgalys, and K. G. Peay. 2013. Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biology and Biochemistry 57: 282 – 291.
dc.identifier.citedreferenceTalbot, J. M., and K. K. Treseder. 2012. Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology 93: 345 – 354.
dc.identifier.citedreferenceToju, H., A. S. Tanabe, S. Yamamoto, and H. Sato. 2012. High‐coverage ITS primers for the DNA‐based identification of Ascomycetes and Basidiomycetes in environmental samples. PLoS ONE 7: e40863.
dc.identifier.citedreferenceValaskova, V., J. Snajdr, B. Bittner, T. Cajthaml, V. Merhautova, M. Hoffichter, and P. Baldrian. 2007. Production of lignocellulose‐degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biology & Biochemistry 39: 2651 – 2660.
dc.identifier.citedreferencevan Diepen, L. T., S. D. Frey, E. A. Landis, E. W. Morrison, and A. Pringle. 2017. Fungi exposed to chronic nitrogen enrichment are less able to decay leaf litter. Ecology 98: 5 – 11.
dc.identifier.citedreferenceVilgalys, R. 2018. Conserved primer sequences for PCR amplification and sequencing from nuclear ribosomal RNA. https://sites.duke.edu/vilgalyslab/rdna_primers_for_fungi/.
dc.identifier.citedreferenceVilgalys, R., and D. Gonzalez. 1990. Organization of ribosomal DNA in the basidiomycete Thanatephorus praticola. Current Genetics 18: 277 – 280.
dc.identifier.citedreferenceWaldrop, M. P., and D. R. Zak. 2006. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9: 921 – 933.
dc.identifier.citedreferenceWorrall, J. J., S. E. Anagnost, and R. A. Zabel. 1997. Comparison of wood decay among diverse lignicolous fungi. Mycologia 89: 199 – 219.
dc.identifier.citedreferenceXia, M., A. F. Talhelm, and K. S. Pregitzer. 2015. Fine roots are the dominant source of recalcitrant plant litter in sugar maple‐dominated northern hardwood forests. New Phytologist 208: 715 – 726.
dc.identifier.citedreferenceXia, M., A. F. Talhelm, and K. S. Pregitzer. 2017a. Chronic nitrogen deposition influences the chemical dynamics of leaf litter and fine roots during decomposition. Soil Biology and Biochemistry 112: 24 – 34.
dc.identifier.citedreferenceXia, M., A. F. Talhelm, and K. S. Pregitzer. 2017b. Long‐term simulated atmospheric nitrogen deposition alters leaf and fine root decomposition. Ecosystems: https://doi.org/10.1007/s10021-017-0130-3.
dc.identifier.citedreferenceZak, D. R., W. E. Holmes, A. J. Burton, K. S. Pregitzer, and A. F. Talhelm. 2008. Simulated atmospheric NO 3 − deposition increases soil organic matter by slowing decomposition. Ecological Applications 18: 2016 – 2027.
dc.identifier.citedreferenceZak, D. R., K. S. Pregitzer, W. E. Holmes, A. J. Burton, and G. P. Zogg. 2004. Anthropogenic N deposition and the fate of 15 NO 3 − in a northern hardwood ecosystem. Biogeochemistry 69: 143 – 157.
dc.identifier.citedreferenceFrey, S. D., M. Knorr, J. L. Parrent, and R. T. Simpson. 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management 196: 159 – 171.
dc.identifier.citedreferenceAnder, P., and K. E. Eriksson. 1977. Selective degradation of wood components by white‐rot fungi. Physiologia Plantarum 41: 239 – 248.
dc.identifier.citedreferenceAnderson, M. J. 2001. A new method for non‐parametric multivariate analysis of variance. Austral Ecology 26: 32 – 46.
dc.identifier.citedreferenceAusec, L., J. D. Van Elsas, and I. Mandic‐Mulec. 2011. Two‐and three‐domain bacterial laccase‐like genes are present in drained peat soils. Soil Biology and Biochemistry 43: 975 – 983.
dc.identifier.citedreferenceBaldrian, P. 2006. Fungal laccases – occurrence and properties. FEMS Microbiology Reviews 30: 215 – 242.
dc.identifier.citedreferenceBellemain, E., T. Carlsen, C. Brochmann, E. Coissac, P. Taberlet, and H. Kauserud. 2010. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology 10: 189.
dc.identifier.citedreferenceBerg, B., and E. Matzner. 1997. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Reviews 5: 1 – 25.
dc.identifier.citedreferenceBinder, M., and D. S. Hibbett. 2002. Higher‐level phylogenetic relationships of homobasidiomycetes (mushroom‐forming fungi) inferred from four rDNA regions. Molecular Phylogenetics and Evolution 22: 76 – 90.
dc.identifier.citedreferenceBinder, M., et al. 2013. Phylogenetic and phylogenomic overview of the Polyporales. Mycologia 105: 1350 – 1373.
dc.identifier.citedreferenceBlanchette, R. A. 1984. Screening wood decayed by white rot fungi for preferential lignin degradation. Applied and Environmental Microbiology 48: 647 – 653.
dc.identifier.citedreferenceBowman, W. D., C. C. Cleveland, L. Halada, J. Hresko, and J. S. Baron. 2008. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience 1: 767.
dc.identifier.citedreferenceBoyle, C. D., B. R. Kropp, and I. D. Reid. 1992. Solubilization and mineralization of lignin by white rot fungi. Applied and Environmental Microbiology 58: 3217 – 3224.
dc.identifier.citedreferenceBugg, T. D. H., M. Ahmad, E. M. Hardiman, and R. Rahmanpour. 2011a. Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports 28: 1883 – 1896.
dc.identifier.citedreferenceBugg, T. D. H., M. Ahmad, E. M. Hardiman, and R. Singh. 2011b. The emerging role for bacteria in lignin degradation and bio‐product formation. Current Opinion in Biotechnology 22: 394 – 400.
dc.identifier.citedreferenceBu’Lock, J., R. Detroy, Z. Hošťálek, and A. Munim‐Al‐Shakarchi. 1974. Regulation of secondary biosynthesis in Gibberella fujikuroi. Transactions of the British Mycological Society 62: 377 – 389.
dc.identifier.citedreferenceBurton, A. J., J. C. Jarvey, M. P. Jarvi, D. R. Zak, and K. S. Pregitzer. 2012. Chronic N deposition alters root respiration‐tissue N relationship in northern hardwood forests. Global Change Biology 18: 258 – 266.
dc.identifier.citedreferenceBurton, A. J., K. S. Pregitzer, J. N. Crawford, G. P. Zogg, and D. R. Zak. 2004. Simulated chronic NO 3 − deposition reduces soil respiration in northern hardwood forests. Global Change Biology 10: 1080 – 1091.
dc.identifier.citedreferenceCampbell, W. G. 1932. The chemistry of the white rots of wood: The effect on wood substance of Ganoderma applanatum (Pers.) Pat., Fomes fomentarius (Linn.) Fr., Polyporus adustus (Willd.) Fr., Pleurotus ostreatus (Jacq.) Fr., Armillaria mellea (Vahl.) Fr., Trametes pini (Brot.) Fr., and Polystictus abietinus (Dicks.) Fr. Biochemical Journal 26: 1829.
dc.identifier.citedreferenceCarreiro, M. M., R. L. Sinsabaugh, D. A. Repert, and D. F. Parkhurst. 2000. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81: 2359 – 2365.
dc.identifier.citedreferenceClarke, K. R. 1993. Nonparametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117 – 143.
dc.identifier.citedreferenceClarke, K., and R. Gorley. 2006. User manual/tutorial. Primer‐E Ltd., Plymouth, UK.
dc.identifier.citedreferenceCline, L. C., and D. R. Zak. 2015. Initial colonization, community assembly and ecosystem function: fungal colonist traits and litter biochemistry mediate decay rate. Molecular Ecology 24: 5045 – 5058.
dc.identifier.citedreferenceCole, J. R., Q. Wang, J. A. Fish, B. Chai, D. M. McGarrell, Y. Sun, C. T. Brown, A. Porras‐Alfaro, C. R. Kuske, and J. M. Tiedje. 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Research 42: D633 – D642.
dc.identifier.citedreferenceCommanday, F., and J. M. Macy. 1985. Effect of substrate nitrogen on lignin degradation by Pleurotus‐ostreatus. Archives of Microbiology 142: 61 – 65.
dc.identifier.citedreferenceCraine, J. M., C. Morrow, and N. Fierer. 2007. Microbial nitrogen limitation increases decomposition. Ecology 88: 2105 – 2113.
dc.identifier.citedreferencede Boer, W., L. B. Folman, R. C. Summerbell, and L. Boddy. 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews 29: 795 – 811.
dc.identifier.citedreferenceDe Santo, A. V., A. De Marco, A. Fierro, B. Berg, and F. A. Rutigliano. 2009. Factors regulating litter mass loss and lignin degradation in late decomposition stages. Plant and Soil 318: 217 – 228.
dc.identifier.citedreferenceDeForest, J. L., D. R. Zak, K. S. Pregitzer, and A. J. Burton. 2004a. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biology & Biochemistry 36: 965 – 971.
dc.identifier.citedreferenceDeForest, J. L., D. R. Zak, K. S. Pregitzer, and A. J. Burton. 2004b. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Science Society of America Journal 68: 132 – 138.
dc.identifier.citedreferenceDel Rıo, J., A. Gutiérrez, M. Martınez, and A. Martınez. 2001. Py–GC/MS study of Eucalyptus globulus wood treated with different fungi. Journal of Analytical and Applied Pyrolysis 58: 441 – 452.
dc.identifier.citedreferenceDel Rıo, J., M. Speranza, A. Gutiérrez, M. Martınez, and A. Martınez. 2002. Lignin attack during eucalypt wood decay by selected basidiomycetes: a Py‐GC/MS study. Journal of Analytical and Applied Pyrolysis 64: 421 – 431.
dc.identifier.citedreferenceDouanla‐Meli, C., and E. Langer. 2008. Phylogenetic relationship of Marasmius mbalmayoensis sp. nov. to the tropical African Marasmius bekolacongoli complex based on nuc‐LSU rDNA sequences. Mycologia 100: 445 – 454.
dc.identifier.citedreferenceEdgar, R. C., B. J. Haas, J. C. Clemente, C. Quince, and R. Knight. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194 – 2200.
dc.identifier.citedreferenceEdwards, I. P., and D. R. Zak. 2010. Phylogenetic similarity and structure of Agaricomycotina communities across a forested landscape. Molecular Ecology 19: 1469 – 1482.
dc.identifier.citedreferenceEdwards, I. P., D. R. Zak, H. Kellner, S. D. Eisenlord, and K. S. Pregitzer. 2011. Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest. PLoS ONE 6: e20421.
dc.identifier.citedreferenceEisenlord, S. D., Z. Freedman, D. R. Zak, K. Xue, Z. L. He, and J. Z. Zhou. 2013. Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition. Applied and Environmental Microbiology 79: 1191 – 1199.
dc.identifier.citedreferenceEntwistle, E. M., D. R. Zak, and I. P. Edwards. 2013. Long‐term experimental nitrogen deposition alters the composition of the active fungal community in the forest floor. Soil Science Society of America Journal 77: 1648 – 1658.
dc.identifier.citedreferenceFenn, P., and T. K. Kirk. 1981. Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanerochaete‐chrysosporium. Archives of Microbiology 130: 59 – 65.
dc.identifier.citedreferenceFloudas, D., et al. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336: 1715 – 1719.
dc.identifier.citedreferenceFloudas, D., et al. 2015. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii. Fungal Genetics and Biology 76: 78 – 92.
dc.identifier.citedreferenceFog, K. 1988. The effect of added nitrogen on the rate of decomposition of organic‐matter. Biological Reviews of the Cambridge Philosophical Society 63: 433 – 462.
dc.identifier.citedreferenceFontaine, S., A. Mariotti, and L. Abbadie. 2003. The priming effect of organic matter: A question of microbial competition? Soil Biology and Biochemistry 35: 837 – 843.
dc.identifier.citedreferenceFox, J. 2005. Getting started with the R commander: a basic‐statistics graphical user interface to R. Journal of Statistical Software 14: 1 – 42.
dc.identifier.citedreferenceFreedman, Z. B., K. J. Romanowicz, R. A. Upchurch, and D. R. Zak. 2015. Differential responses of total and active soil microbial communities to long‐term experimental N deposition. Soil Biology & Biochemistry 90: 275 – 282.
dc.identifier.citedreferenceFreedman, Z. B., R. A. Upchurch, D. R. Zak, and L. C. Cline. 2016. Anthropogenic N deposition slows decay by favoring bacterial metabolism: insights from metagenomic analyses. Frontiers in Microbiology 7: 11.
dc.identifier.citedreferenceFreedman, Z., and D. R. Zak. 2014. Atmospheric N deposition increases bacterial laccase‐like multicopper oxidases: implications for organic matter decay. Applied and Environmental Microbiology 80: 4460 – 4468.
dc.identifier.citedreferenceFreedman, Z., and D. R. Zak. 2015. Soil bacterial communities are shaped by temporal and environmental filtering: evidence from a long‐term chronosequence. Environmental Microbiology 17: 3208 – 3218.
dc.identifier.citedreferenceFrey, S., S. Ollinger, K. Nadelhoffer, R. Bowden, E. Brzostek, A. Burton, B. Caldwell, S. Crow, C. Goodale, and A. Grandy. 2014. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry 121: 305 – 316.
dc.identifier.citedreferenceGalloway, J. N., et al. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70: 153 – 226.
dc.identifier.citedreferenceGan, H., D. R. Zak, and M. D. Hunter. 2013. Chronic nitrogen deposition alters the structure and function of detrital food webs in a northern hardwood ecosystem. Ecological Applications 23: 1311 – 1321.
dc.identifier.citedreferenceGardes, M., and T. D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes‐application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113 – 118.
dc.identifier.citedreferenceGold, M. H., D. L. Mitzel, and I. H. Segel. 1973. Regulation of nigeran accumulation by Aspergillus aculeatus. Journal of Bacteriology 113: 856 – 862.
dc.identifier.citedreferenceGutiérrez, A., C. José, M. J. Martínez, and A. T. Martínez. 1999. Fungal degradation of lipophilic extractives in Eucalyptus globulus wood. Applied and Environmental Microbiology 65: 1367 – 1371.
dc.identifier.citedreferenceHatakka, A. 1994. Lignin‐modifying enzymes from selected white‐rot fungi – production and role in lignin degradation. FEMS Microbiology Reviews 13: 125 – 135.
dc.identifier.citedreferenceHesse, C. N., R. C. Mueller, M. Vuyisich, L. V. Gallegos‐Graves, C. D. Gleasner, D. R. Zak, and C. R. Kuske. 2015. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests. Frontiers in Microbiology 6: 337.
dc.identifier.citedreferenceHibbett, D. S., and M. J. Donoghue. 1995. Progress toward a phylogenetic classification of the Polyporaceae through parsimony analysis of mitochondrial ribosomal DNA sequences. Canadian Journal of Botany 73: 853 – 861.
dc.identifier.citedreferenceHofrichter, M. 2002. Review: lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology 30: 454 – 466.
dc.identifier.citedreferenceHou, Y., H. Zhang, L. Miranda, and S. Lin. 2010. Serious overestimation in quantitative PCR by circular (supercoiled) plasmid standard: microalgal pcna as the model gene. PLoS ONE 5: e9545.
dc.identifier.citedreferenceIbáñez, I., D. R. Zak, A. J. Burton, and K. S. Pregitzer. 2016. Chronic nitrogen deposition alters tree allometric relationships: implications for biomass production and carbon storage. Ecological Applications 26: 913 – 925.
dc.identifier.citedreferenceJanssens, I. A., et al. 2010. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience 3: 315 – 322.
dc.identifier.citedreferenceJeffries, T. W., S. Choi, and T. K. Kirk. 1981. Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Applied and Environmental Microbiology 42: 290 – 296.
dc.identifier.citedreferenceKaal, E. E., J. A. Field, and T. W. Joyce. 1995. Increasing ligninolytic enzyme activities in several white‐rot basidiomycetes by nitrogen‐sufficient media. Bioresource Technology 53: 133 – 139.
dc.identifier.citedreferenceKeyser, P., T. Kirk, and J. Zeikus. 1978. Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. Journal of Bacteriology 135: 790 – 797.
dc.identifier.citedreferenceKirk, T. K., and R. L. Farrell. 1987. Enzymatic combustion – the microbial‐degradation of lignin. Annual Review of Microbiology 41: 465 – 505.
dc.identifier.citedreferenceKleppe, P. J. 1970. Kraft pulping. Tappi 53: 35 – 47.
dc.identifier.citedreferenceKuuskeri, J., M. R. Mäkelä, J. Isotalo, I. Oksanen, and T. Lundell. 2015. Lignocellulose‐converting enzyme activity profiles correlate with molecular systematics and phylogeny grouping in the incoherent genus Phlebia (Polyporales, Basidiomycota). BMC Microbiology 15: 1.
dc.identifier.citedreferenceLarsson, E., and K.‐H. Larsson. 2003. Phylogenetic relationships of russuloid basidiomycetes with emphasis on aphyllophoralean taxa. Mycologia 95: 1037 – 1065.
dc.identifier.citedreferenceLeatham, G. F., and T. K. Kirk. 1983. Regulation of ligninolytic activity by nutrient nitrogen in white‐rot basidiomycetes. FEMS Microbiology Letters 16: 65 – 67.
dc.identifier.citedreferenceLieb, A. M., A. Darrouzet‐Nardi, and W. D. Bowman. 2011. Nitrogen deposition decreases acid buffering capacity of alpine soils in the southern Rocky Mountains. Geoderma 164: 220 – 224.
dc.identifier.citedreferenceLiechty, H. O., G. D. Mroz, and D. D. Reed. 1993. Cation and anion fluxes in northern hardwood throughfall along an acidic deposition gradient. Canadian Journal of Forest Research 23: 457 – 467.
dc.identifier.citedreferenceLiers, C., T. Arnstadt, R. Ullrich, and M. Hofrichter. 2011. Patterns of lignin degradation and oxidative enzyme secretion by different wood‐ and litter‐colonizing basidiomycetes and ascomycetes grown on beech‐wood. FEMS Microbiology Ecology 78: 91 – 102.
dc.identifier.citedreferenceLindahl, B. D., K. Ihrmark, J. Boberg, S. E. Trumbore, P. Högberg, J. Stenlid, and R. D. Finlay. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist 173: 611 – 620.
dc.identifier.citedreferenceLiu, K. L., A. Porras‐Alfaro, C. R. Kuske, S. A. Eichorst, and G. Xie. 2012. Accurate, rapid taxonomic classification of fungal large‐subunit rRNA genes. Applied and Environmental Microbiology 78: 1523 – 1533.
dc.identifier.citedreferenceLong, R. P., S. B. Horsley, and P. R. Lilja. 1997. Impact of forest liming on growth and crown vigor of sugar maple and associated hardwoods. Canadian Journal of Forest Research 27: 1560 – 1573.
dc.identifier.citedreferenceLu, L., G. Zeng, C. Fan, J. Zhang, A. Chen, M. Chen, M. Jiang, Y. Yuan, H. Wu, and M. Lai. 2014. Diversity of two‐domain laccase‐like multicopper oxidase genes in Streptomyces spp.: identification of genes potentially involved in extracellular activities and lignocellulose degradation during composting of agricultural waste. Applied and Environmental Microbiology 80: 3305 – 3314.
dc.identifier.citedreferenceManter, D. K., and J. M. Vivanco. 2007. Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed‐template samples by qPCR and length heterogeneity analysis. Journal of Microbiological Methods 71: 7 – 14.
dc.identifier.citedreferenceMartínez Ferrer, Á. T., M. Speranza, F. J. Ruíz‐Dueñas, P. Ferreira, S. Camarero, F. Guillén, M. J. Martínez, A. Gutiérrez Suárez, and J. C. D. Río Andrade. 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology 8: 195 – 204.
dc.identifier.citedreferenceMatheny, P. B., et al. 2006. Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98: 982 – 995.
dc.identifier.citedreferenceMcCarthy, A. J., A. Paterson, and P. Broda. 1986. Lignin solubilisation by Thermomonospora mesophila. Applied Microbiology and Biotechnology 24: 347 – 352.
dc.identifier.citedreferenceMelillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. 1989. Carbon and nitrogen dynamics along the decay continuum—plant litter to soil organic‐matter. Plant and Soil 115: 189 – 198.
dc.identifier.citedreferenceMiller, S. L., E. Larsson, K.‐H. Larsson, A. Verbeken, and J. Nuytinck. 2006. Perspectives in the new Russulales. Mycologia 98: 960 – 970.
dc.identifier.citedreferenceMiller, A. N., and A. S. Methven. 2000. Biological species concepts in eastern North American populations of Lentinellus. Mycologia 92: 792 – 800.
dc.identifier.citedreferenceMiller, O. K., and L. Stewart. 1971. The genus Lentinellus. Mycologia 63: 333 – 369.
dc.identifier.citedreferenceMoncalvo, J.‐M., et al. 2002. One hundred and seventeen clades of euagarics. Molecular Phylogenetics and Evolution 23: 357 – 400.
dc.identifier.citedreferenceMorrison, E. W., S. D. Frey, J. J. Sadowsky, L. T. van Diepen, W. K. Thomas, and A. Pringle. 2016. Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. Fungal Ecology 23: 48 – 57.
dc.identifier.citedreferenceNagy, L. G., et al. 2015. Comparative genomics of early‐diverging mushroom‐forming fungi provides insights into the origins of lignocellulose decay capabilities. Molecular Biology and Evolution 33: 959 – 970.
dc.identifier.citedreferenceNave, L., E. Vance, C. Swanston, and P. Curtis. 2009. Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N‐mineralization. Geoderma 153: 231 – 240.
dc.identifier.citedreferenceOsono, T., Y. Fukasawa, and H. Takeda. 2003. Roles of diverse fungi in larch needle‐litter decomposition. Mycologia 95: 820 – 826.
dc.identifier.citedreferenceOsono, T., S. Hobara, T. Hishinuma, and J.‐I. Azuma. 2011. Selective lignin decomposition and nitrogen mineralization in forest litter colonized by Clitocybe sp. European Journal of Soil Biology 47: 114 – 121.
dc.identifier.citedreferenceOsono, T., S. Hobara, K. Koba, and K. Kameda. 2006. Reduction of fungal growth and lignin decomposition in needle litter by avian excreta. Soil Biology and Biochemistry 38: 1623 – 1630.
dc.identifier.citedreferenceOsono, T., and H. Takeda. 2002. Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia 94: 421 – 427.
dc.identifier.citedreferenceOsono, T., and H. Takeda. 2006. Fungal decomposition of Abies needle and Betula leaf litter. Mycologia 98: 172 – 179.
dc.identifier.citedreferencePatel, R. N., and K. K. Rao. 1993. Ultrastructural changes during wood decay by Antrodiella sp. RK1. World Journal of Microbiology & Biotechnology 9: 332 – 337.
dc.identifier.citedreferencePatterson, S. L., D. R. Zak, A. J. Burton, A. F. Talhelm, and K. S. Pregitzer. 2012. Simulated N deposition negatively impacts sugar maple regeneration in a northern hardwood ecosystem. Journal of Applied Ecology 49: 155 – 163.
dc.identifier.citedreferencePettersen, R. C. 1984. The chemical composition of wood. ACS Publications, Washington, D.C., USA.
dc.identifier.citedreferencePregitzer, K. S., A. J. Burton, D. R. Zak, and A. F. Talhelm. 2008. Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Global Change Biology 14: 142 – 153.
dc.identifier.citedreferencePrentice, I. 2001. The carbon cycle and atmospheric carbon dioxide. Pages 183 – 237 in J. Houghton, et al., editors. Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the IPCC. Cambridge University Press, Cambridge, UK.
dc.identifier.citedreferenceR Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.