Solid‐Phase Supports for Oligonucleotide Synthesis
dc.contributor.author | Pon, Richard T. | |
dc.date.accessioned | 2018-05-15T20:12:48Z | |
dc.date.available | 2018-05-15T20:12:48Z | |
dc.date.issued | 2000-02 | |
dc.identifier.citation | Pon, Richard T. (2000). "Solid‐Phase Supports for Oligonucleotide Synthesis." Current Protocols in Nucleic Acid Chemistry 00(1): 3.1.1-3.1.28. | |
dc.identifier.issn | 1934-9270 | |
dc.identifier.issn | 1934-9289 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/143613 | |
dc.description.abstract | This unit begins with a discussion of the advantages and disadvantages of oligonucleotide synthesis using solid supports. The physical and chemical properties of solid‐phase supports are discussed in terms of their suitability for oligonucleotide synthesis. In addition, the unit outlines the properties of linkers used for transient or permanent attachment of properly protected nucleosides to the derivatized support, as well as strategies for coupling nucleosides to linkers and conditions for the release of synthetic oligonucleotides from specific supports. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Elsevier Science Publishing | |
dc.title | Solid‐Phase Supports for Oligonucleotide Synthesis | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Public Health | |
dc.subject.hlbsecondlevel | Biological Chemistry | |
dc.subject.hlbsecondlevel | Chemical Engineering | |
dc.subject.hlbsecondlevel | Chemistry | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/143613/1/cpnc0301.pdf | |
dc.identifier.doi | 10.1002/0471142700.nc0301s00 | |
dc.identifier.source | Current Protocols in Nucleic Acid Chemistry | |
dc.identifier.citedreference | Routledge, A., Wallis, M.P., Ross, K.C., and Fraser, W. 1995. A new deprotection strategy for automated oligonucleotide synthesis using a novel silyl‐linked solid support. Bioorgan. Med. Chem. Lett. 5: 2059 ‐ 2064. | |
dc.identifier.citedreference | Shchepinov, M.S., CaseGreen, S.C., and Southern, E.M. 1997. Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays. Nucl. Acids Res. 25: 1155 ‐ 1161. | |
dc.identifier.citedreference | Sproat, B.S. and Brown, D.M. 1985. A new linkage for solid phase synthesis of oligodeoxyribonucleotides. Nucl. Acids Res. 13: 2979 ‐ 2987. | |
dc.identifier.citedreference | Stengele, K.P. and Pfleiderer, W. 1990. Improved synthesis of oligodeoxyribonucleotides. Tetrahedron Lett. 31: 2549 ‐ 2552. | |
dc.identifier.citedreference | Stimpson, D.I., Hoijer, J.V., Hsieh, W.T., Jou, C., Gordon, J., Theriault, T., Gamble, R., and Baldeschwieler, J.D. 1995. Real‐time detection of DNA hybridization and melting on oligonucleotide arrays by using optical wave guides. Proc. Natl. Acad. Sci. U.S.A. 92: 6379 ‐ 6383. | |
dc.identifier.citedreference | Tanaka, T., Yamada, Y., Uesugi, S., and Ikehara, M. 1989. Preparation of a new phosphorylating agent: S ‐( N ‐monomethoxytritylaminoethyl)‐ O ‐( o ‐chlorophenyl)phosphorothioate and its application in oligonucleotide synthesis. Tetrahedron 45: 651 ‐ 660. | |
dc.identifier.citedreference | Tang, J.Y. and Tang, J.X. 1997. Passivated polymer supports for nucleic acid synthesis. United States Patent #5,668,268. | |
dc.identifier.citedreference | Uddin, A.H., Piunno, P.A., Hudson, R.H., Damha, M.J., and Krull, U.J. 1997. A fiber optic biosensor for fluorimetric detection of triple‐helical DNA. Nucl. Acids Res. 25: 4139 ‐ 4146. | |
dc.identifier.citedreference | Urdea, M.S. and Horn, T. 1986. Solid‐supported synthesis, deprotection and enzymatic purification of oligodeoxyribonucleotides. Tetrahedron Lett. 27: 2933 ‐ 2936. | |
dc.identifier.citedreference | van Aerschot, A., Herdewijn, P., and Vanderhaeghe, H. 1988. Silica gel functionalised with different spacers as solid support for oligonucleotide synthesis. Nucleos. Nucleot. 7: 75 ‐ 90. | |
dc.identifier.citedreference | van der Laan, A.C., Brill, R., Kuimelis, R.G., Kuylyeheskiely, E., Vanboom, J.H., Andrus, A., and Vinayak, R. 1997. A convenient automated solid‐phase synthesis of PNA‐(5′)‐DNA‐(3′)‐PNA chimera. Tetrahedron Lett. 38: 2249 ‐ 2252. | |
dc.identifier.citedreference | van der Marel, G.A., Marugg, J.E., de Vroom, E., Wille, G., Tromp, M., van Boeckel, C.A.A., and van Boom, J.H. 1982. Phosphotriester synthesis of DNA fragments on cellulose and polystyrene solid supports. Recl. Trav. Chim. Pays‐Bas 101: 234 ‐ 241. | |
dc.identifier.citedreference | Venkatesan, H. and Greenberg, M.M. 1996. Improved utility of photolabile solid phase synthesis supports for the synthesis of oligonucleotides containing 3′‐hydroxyl termini. J. Org. Chem. 61: 525 ‐ 529. | |
dc.identifier.citedreference | Wehnert, M.S., Matson, R.S., Rampal, J.B., Coassin, P., and Caskey, C.T. 1994. A rapid scanning strip for tri‐ and dinucleotide short tandem repeats. Nucl. Acids Res. 22: 1701 ‐ 1704. | |
dc.identifier.citedreference | Weiler, J. and Hoheisel, J.D. 1996. Combining the preparation of oligonucleotide arrays and synthesis of high‐quality primers. Anal. Biochem. 243: 218 ‐ 227. | |
dc.identifier.citedreference | Weiler, J. and Hoheisel, J.D. 1997. Picomole syntheses of high quality oligonucleotide primers in combination with the preparation of oligonucleotide arrays. Nucleos. Nucleot. 16: 1793 ‐ 1796. | |
dc.identifier.citedreference | Weiler, J. and Pfleiderer, W. 1995. An improved method for the large scale synthesis of oligonucleotides applying the NPE/NPEOC strategy. Nucleos. Nucleot. 14: 917 ‐ 920. | |
dc.identifier.citedreference | Winter, M. 1996. Supports for solid‐phase organic synthesis. In Combinatorial Peptide and Non‐Peptide Libraries: A Handbook ( G. Jung, ed.) pp. 465 ‐ 510. VCH, Weinheim. | |
dc.identifier.citedreference | Wright, P., Lloyd, D., Rapp, W., and Andrus, A. 1993. Large scale synthesis of oligonucleotides via phosphoramidite nucleosides and a high‐loaded polystyrene support. Tetrahedron Lett. 34: 3373 ‐ 3376. | |
dc.identifier.citedreference | Yip, K.F. and Tsou, K.C. 1971. A new polymer support method for the synthesis of ribooligonucleotide. J. Am. Chem. Soc. 93: 3272 ‐ 3276. | |
dc.identifier.citedreference | Zhang, X.H. and Jones, R.A. 1996. A universal allyl linker for solid‐phase synthesis. Tetrahedron Lett. 37: 3789 ‐ 3790. | |
dc.identifier.citedreference | Adinolfi, M., Barone, G., Denapoli, L., Iadonisi, A., and Piccialli, G. 1996. Solid phase synthesis of oligosaccharides. Tetrahedron Lett. 37: 5007 ‐ 5010. | |
dc.identifier.citedreference | Alazzouzi, E., Escaja, N., Grandas, A., and Pedroso, E. 1997. A straightforward solid‐phase synthesis of cyclic oligodeoxyribonucleotides. Angew. Chem. Intl. Ed. Engl. 36: 1506 ‐ 1508. | |
dc.identifier.citedreference | Albretsen, C., Kalland, K.‐H., Haukanes, B.‐I., Håvarstein, L.‐S., and Kleppe, K. 1990. Applications of magnetic beads with covalently attached oligonucleotides in hybridization: Isolation and detection of specific measles virus mRNA from a crude cell lysate. Anal. Biochem. 189: 40 ‐ 50. | |
dc.identifier.citedreference | Alul, R.H., Singman, C.N., Zhang, G.R., and Letsinger, R.L. 1991. Oxalyl‐CPG—A labile support for synthesis of sensitive oligonucleotide derivatives. Nucl. Acids Res. 19: 1527 ‐ 1532. | |
dc.identifier.citedreference | Arnold, L., Tocík, Z., Bradková, E., Hostomský, Z., Paces, V., and Smrt, J. 1989. Automated chloridite and amidite synthesis of oligodeoxyribonucleotides on a long chain support using amidine protected purine nucleosides. Collect. Czech. Chem. Commun. 54: 523 ‐ 532. | |
dc.identifier.citedreference | Asseline, U. and Thuong, N.T. 1989. Solid‐phase synthesis of modified oligodeoxyribonucleotides with an acridine derivative or a thiophosphate group at their 3′ end. Tetrahedron Lett. 30: 2521 ‐ 2524. | |
dc.identifier.citedreference | Avino, A., Garcia, R.G., Diaz, A., Albericio, F., and Eritja, R. 1996. A comparative study of supports for the synthesis of oligonucleotides without using ammonia. Nucleos. Nucleot. 15: 1871 ‐ 1889. | |
dc.identifier.citedreference | Bader, R., Brugger, H., Hinz, M., Rembe, C., Hofer, E.P., and Seliger, H. 1997a. A rapid method for the preparation of a one dimensional sequence‐overlapping oligonucleotide library. Nucleos. Nucleot. 16: 835 ‐ 842. | |
dc.identifier.citedreference | Bader, R., Hinz, M., Schu, B., and Seliger, H. 1997b. Oligonucleotide microsynthesis of a 200‐mer and of one dimensional arrays on a surface of hydroxylated polypropylene tape. Nucleos. Nucleot. 16: 829 ‐ 833. | |
dc.identifier.citedreference | Bardella, F., Eritja, R., Pedroso, E., and Giralt, E. 1993. Gel‐phase P‐31 NMR—A new analytical tool to evaluate solid phase oligonucleotide synthesis. Bioorgan. Med. Chem. Lett. 3: 2793 ‐ 2796. | |
dc.identifier.citedreference | Beattie, K.L., Logsdon, N.J., Anderson, R.S., Espinosa‐Lara, J.M., Maldonado‐Rodriguez, R., and Frost, J.D.I. 1988. Gene synthesis technology: Recent developments and future prospects. Biotechnol. Appl. Biochem. 10: 510 ‐ 521. | |
dc.identifier.citedreference | Beaucage, S.L. and Iyer, R.P. 1992. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron 48: 2223 ‐ 2311. | |
dc.identifier.citedreference | Beaucage, S.L. and Iyer, R.P. 1993. The functionalization of oligonucleotides via phosphoramidite derivatives. Tetrahedron 49: 1925 ‐ 1963. | |
dc.identifier.citedreference | Belagaje, R. and Brush, C.K. 1982. Polymer supported synthesis of oligonucleotides by a phosphotriester method. Nucl. Acids Res. 10: 6295 ‐ 6303. | |
dc.identifier.citedreference | Bergmann, F. and Bannwarth, W. 1995. Solid phase synthesis of directly linked peptide‐oligodeoxynucleotide hybrids using standard synthesis protocols. Tetrahedron Lett. 36: 1839 ‐ 1842. | |
dc.identifier.citedreference | Berner, S., Gröger, G., and Seliger, H. 1989. A new option in solid phase synthesis of DNA fragments. Nucleos. Nucleot. 8: 1165 ‐ 1167. | |
dc.identifier.citedreference | Bhongle, N.N. and Tang, J.Y. 1995. A convenient and practical method for derivatization of solid supports for nucleic acid synthesis. Synth. Commun. 25: 3671 ‐ 3679. | |
dc.identifier.citedreference | Birch‐Hirschfield, E., Foldespapp, Z., Guhrs, K.H., and Seliger, H. 1996. Oligonucleotide synthesis on polystyrene‐grafted poly(tetrafluoroethyl‐ene) support. Helv. Chim. Acta 79: 137 ‐ 150. | |
dc.identifier.citedreference | Boal, J.H., Wilk, A., Harindranath, N., Max, E.E., Kempe, T., and Beaucage, S.L. 1996. Cleavage of oligodeoxyribonucleotides from controlled‐pore glass supports and their rapid deprotection by gaseous amines. Nucl. Acids Res. 24: 3115 ‐ 3117. | |
dc.identifier.citedreference | Bonora, G.M. 1995. Polyethylene glycol. A high efficiency liquid phase (HELP) for the large scale synthesis of the oligonucleotides. Appl. Biochem. Biotechnol. 54: 3 ‐ 17. | |
dc.identifier.citedreference | Bonora, G.M., Baldan, A., Schiavon, O., Ferruti, P., and Veronese, F.M. 1996. Poly(N‐acryloylmorpholine) as a new soluble support for the liquid‐phase synthesis of oligonucleotides. Tetrahedron Lett. 37: 4761 ‐ 4764. | |
dc.identifier.citedreference | Bower, M., Summers, M.F., Kell, B., Hoskins, J., Zon, G., and Wilson, W.D. 1987. Synthesis and characterization of oligodeoxyribonucleotides containing terminal phosphates. NMR, UV spectroscopic and thermodynamic analysis of duplex formation of [d(pGGATTCC)] 2, [d(GGAAT‐TCCp)] 2 and [d(pGGAATTCCp)] 2. Nucl. Acids Res. 15: 3531 ‐ 3547. | |
dc.identifier.citedreference | Brown, T., Pritchard, C.E., Turner, G., and Salisbury, S.A. 1989. A new base‐stable linker for solid‐phase oligonucleotide synthesis. J. Chem. Soc. Chem. Commun. 891 ‐ 893. | |
dc.identifier.citedreference | Caruthers, M.H. 1991. Chemical synthesis of DNA and DNA analogues. Acc. Chem. Res. 24: 278 ‐ 284. | |
dc.identifier.citedreference | Chow, F. and Kempe, T. 1997. Process and reagents for processing synthetic oligonucleotides. United States Patent #5,656,741. | |
dc.identifier.citedreference | Chu, T.J., Caldwell, K.D., Weiss, R.B., Gesteland, R.F., and Pitt, W.G. 1992. Low fluorescence background electroblotting membrane for DNA sequencing. Electrophoresis 13: 105 ‐ 114. | |
dc.identifier.citedreference | Cohen, G., Deutsch, J., Fineberg, J., and Levine, A. 1997. Covalent attachment of DNA oligonucleotides to glass. Nucl. Acids Res. 25: 911 ‐ 912. | |
dc.identifier.citedreference | Cosstick, R. and Eckstein, F. 1985. Synthesis of d(GC) and d(CG) octamers containing alternating phosphorothioate linkages: Effect of the phosphorothioate group on the B‐Z transition. Biochemistry 24: 3630 ‐ 3638. | |
dc.identifier.citedreference | Cramer, F., Helbig, R., Hettler, H., Scheit, K.H., and Seliger, H. 1966. Oligonucleotide synthesis with a soluble polymer as a carrier. Angew. Chem. Intl. Ed. Engl. 5: 601 ‐ 601. | |
dc.identifier.citedreference | Crea, R. and Horn, T. 1980. Synthesis of oligonucleotides on cellulose by a phosphotriester method. Nucl. Acids Res. 8: 2331 ‐ 2348. | |
dc.identifier.citedreference | Damha, M.J., Giannaris, P.A., and Zabarylo, S.V. 1990. An improved procedure for derivatization of controlled pore glass beads for solid‐phase oligonucleotide synthesis. Nucl. Acids Res. 18: 3813 ‐ 3821. | |
dc.identifier.citedreference | Debear, J.S., Hayes, J.A., Koleck, M.P., and Gough, G.R. 1987. A universal glass support for oligonucleotide synthesis. Nucleos. Nucleot. 6: 821 ‐ 830. | |
dc.identifier.citedreference | Dell’Aquila, C., Imbach, J.L., and Rayner, B. 1997. Photolabile linker for the solid‐phase synthesis of base‐sensitive oligonucleotides. Tetrahedron Lett. 38: 5289 ‐ 5292. | |
dc.identifier.citedreference | De Napoli, L., Galeone, A., Mayol, L., Messere, A., Montesarchio, D., and Piccialli, G. 1995. Automated solid phase synthesis of cyclic oligonucleotides: A further improvement. Bioorgan. Med. Chem. 3: 1325 ‐ 1329. | |
dc.identifier.citedreference | Devivar, R.V., Koontz, S.L., Peltier, W.J., Pearson, J.E., Guillory, T.A., and Fabricant, J.D. 1999. A new solid‐support for oligonucleotide synthesis. Biorg. Med. Chem. Lett. 9: 1239 ‐ 1242. | |
dc.identifier.citedreference | Duncan, C.H. and Cavalier, S.L. 1988. Affinity chromatography of a sequence‐specific DNA binding protein using Teflon‐linked oligonucleotides. Anal. Biochem. 169: 104 ‐ 108. | |
dc.identifier.citedreference | Efcavitch, J.W., McBride, L.J., and Eadie, J.S. 1986. Effect of pore diameter on the support‐bound synthesis of long oligodeoxynucleotides. In Biophosphates and Their Analogues—Synthesis, Structure, Metabolism and Activity ( K.S. Bruzik and W.J. Stec, eds.) pp. 65 ‐ 70. Elsevier Science Publishing, New York. | |
dc.identifier.citedreference | Efimov, V.A., Buryakova, A.A., Reverdatto, S.V., Chakhmakhcheva, O.G., and Ovchinnikov, Y.A. 1983. Rapid synthesis of long‐chain deoxyribooligonucleotides by the N ‐methylimidazole phosphotriester method. Nucl. Acids Res. 11: 8369 ‐ 8387. | |
dc.identifier.citedreference | Eritja, R., Robles, J., Fernandezforner, D., Albericio, F., Giralt, E., and Pedroso, E. 1991. NPE‐resin, a new approach to the solid‐phase synthesis of protected peptides and oligonucleotides. 1. Synthesis of the supports and their application to oligonucleotide synthesis. Tetrahedron Lett. 32: 1511 ‐ 1514. | |
dc.identifier.citedreference | Felder, E., Schwyzer, R., Charubala, R., Pfleiderer, W., and Schulz, B. 1984. A new solid phase approach for rapid synthesis of oligonucleotides bearing a 3′‐terminal phosphate group. Tetrahedron Lett. 25: 3967 ‐ 3970. | |
dc.identifier.citedreference | Fodor, S.P.A., Read, J.L., Pirrung, M.C., Stryer, L., Lu, T.L., and Solas, D. 1991. Light‐directed, spatially addressable parallel chemical synthesis. Science 251: 767 ‐ 773. | |
dc.identifier.citedreference | Frank, R. 1993. Strategies and techniques in simultaneous solid phase synthesis based on the segmentation of membrane type supports. Bioorgan. Med. Chem. Lett. 3: 425 ‐ 430. | |
dc.identifier.citedreference | Frank, R., Heikens, W., Heisterberg‐Moutsis, G., and Blocker, H. 1983. A new general approach for the simultaneous chemical synthesis of large numbers of oligonucleotides: Segmental solid supports. Nucl. Acids Res. 13: 4365 ‐ 4377. | |
dc.identifier.citedreference | Fruchtel, J.S. and Jung, G. 1996. Organic chemistry on solid supports. Angew. Chem. Intl. Ed. Engl. 35: 17 ‐ 42. | |
dc.identifier.citedreference | Gait, M.J., Matthes, H.W.D., Singh, M.S., Sproat, B.S., and Titmas, R.C. 1982. Rapid synthesis of oligodeoxyribonucleotides VII. Solid phase synthesis of oligodeoxyribonucleotides by a continuous flow phosphotriester method on a kieselguhr‐polyamide support. Nucl. Acids Res. 10: 6243 ‐ 6254. | |
dc.identifier.citedreference | Gold, L., Polisky, B., Uhlenbeck, O., and Yarus, M. 1995. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64: 763 ‐ 797. | |
dc.identifier.citedreference | Gough, G.R., Brunden, M.J., and Gilham, P.T. 1983. 2′(3′)‐O‐Benzoyluridine 5′ linked to glass: An all purpose support for solid phase synthesis of oligodeoxyribonucleotides. Tetrahedron Lett. 24: 5321 ‐ 5324. | |
dc.identifier.citedreference | Gray, D.E., Case‐Green, S.C., Fell, T.S., Dobsen, P.J., and Southern, E.M. 1997. Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array. Langmuir 13: 2833 ‐ 2842. | |
dc.identifier.citedreference | Greenberg, M.M. and Gilmore, J.L. 1994. Cleavage of oligonucleotides from solid‐phase supports using O ‐nitrobenzyl photochemistry. J. Org. Chem. 59: 746 ‐ 753. | |
dc.identifier.citedreference | Grotli, M., Eritja, R., and Sproat, B. 1997. Solid phase synthesis of branched RNA and branched DNA/RNA chimeras. Tetrahedron 53: 11317 ‐ 11347. | |
dc.identifier.citedreference | Gryaznov, S.M. and Letsinger, R.L. 1992. A new approach to synthesis of oligonucleotides with 3′ phosphoryl groups. Tetrahedron Lett. 33: 4127 ‐ 4128. | |
dc.identifier.citedreference | Gupta, K.C., Sharma, P., Kumar, P., and Sathyanarayana, S. 1991. A general method for the synthesis of 3′‐sulfhydryl and phosphate group containing oligonucleotides. Nucl. Acids Res. 19: 3019 ‐ 3025. | |
dc.identifier.citedreference | Guzaev, A. and Lonnberg, H. 1997. A novel solid support for synthesis of 3′‐phosphorylated chimeric oligonucleotides containing internucleosidic methyl phosphotriester and methylphosphonate linkages. Tetrahedron Lett. 38: 3989 ‐ 3992. | |
dc.identifier.citedreference | Hakala, H., Heinonen, P., Iitia, A., and Lonnberg, H. 1997. Detection of oligonucleotide hybridization on a single microparticle by time‐resolved fluorometry: Hybridization assays on polymer particles obtained by direct solid phase assembly of the oligonucleotide probes. Bioconjugate Chem. 8: 378 ‐ 384. | |
dc.identifier.citedreference | Hardy, P.M., Holland, D., Scott, S., Garman, A.J., Newton, C.R., and McLean, M.J. 1998. Reagents for the preparation of two oligonucleotides per synthesis (TOPS). Nucl. Acids Res. 22: 2998 ‐ 3004. | |
dc.identifier.citedreference | Hayakawa, Y., Wakabayashi, S., Kato, H., and Noyori, R. 1990. The allylic protection method in solid‐phase oligonucleotide synthesis: An efficient preparation of solid‐anchored DNA oligomers. J. Am. Chem. Soc. 112: 1691 ‐ 1696. | |
dc.identifier.citedreference | Hayatsu, H. and Khorana, H.G. 1966. Deoxyribooligonucleotide synthesis on a polymer support. J. Am. Chem. Soc. 88: 3182 ‐ 3183. | |
dc.identifier.citedreference | Hermes, J.D., Parekh, S.M., Blacklow, S.C., Köster, H., and Knowles, J.R. 1989. A reliable method for random mutagenesis: The generation of mutant libraries using spiked oligodeoxyribonucleotide primers. Gene 84: 143 ‐ 151. | |
dc.identifier.citedreference | Horn, T. and Urdea, M.S. 1988. Solid‐supported hydrolysis of apurinic sites in synthetic oligonucleotides for rapid and efficient purification on reverse‐ phase cartridges. Nucl. Acids Res. 16: 11559 ‐ 11571. | |
dc.identifier.citedreference | Hyrup, B. and Nielsen, P.E. 1996. Peptide nucleic acids (PNA): synthesis, properties and potential applications. Bioorgan. Med. Chem. 4: 5 ‐ 23. | |
dc.identifier.citedreference | Ito, H., Ike, Y., Ikuta, S., and Itakura, K. 1982. Solid phase synthesis of polynucleotides. VI. Further studies on polystyrene copolymers for the solid support. Nucl. Acids Res. 10: 1755 ‐ 1769. | |
dc.identifier.citedreference | Kamaike, K., Hasegawa, Y., and Ishido, Y. 1988. Efficient synthesis of an oligonucleotide on a cellulose acetate derivative as a novel polymer‐support using phosphotriester approach. Tetrahedron Lett. 29: 647 ‐ 650. | |
dc.identifier.citedreference | Katzhendler, J., Cohen, S., Weisz, M., Ringel, I., Camerini‐Oterio, R.D., and Deutsch, J. 1987. Spacer effect on the synthesis of oligonucleotides by the phosphite method. Reactive Polymers 6: 175 ‐ 187. | |
dc.identifier.citedreference | Katzhendler, J., Cohen, S., Rahamim, E., Weisz, M., Ringel, I., and Deutsch, J. 1989. The effect of spacer, linkage and solid support on the synthesis of oligonucleotides. Tetrahedron 45: 2777 ‐ 2792. | |
dc.identifier.citedreference | Khorana, H.G. 1979. Total synthesis of a gene. Science 203: 614 ‐ 625. | |
dc.identifier.citedreference | Kumar, A. 1994. Development of a suitable linkage for oligonucleotide synthesis and preliminary hybridization studies on oligonucleotides synthesized in situ. Nucleos. Nucleot. 13: 2125 ‐ 2134. | |
dc.identifier.citedreference | Kumar, P., Bose, N.K., and Gupta, K.C. 1991. A versatile solid phase method for the synthesis of oligonucleotide‐3′‐phosphates. Tetrahedron Lett. 32: 967 ‐ 970. | |
dc.identifier.citedreference | Kumar, P., Sharma, A.K., Sharma, P., Garg, B.S., and Gupta, K.C. 1996. Express protocol for functionalization of polymer supports for oligonucleotide synthesis. Nucleos. Nucleot. 15: 879 ‐ 888. | |
dc.identifier.citedreference | Kwiatkowski, M., Nilsson, M., and Landegren, U. 1996. Synthesis of full‐length oligonucleotides: Cleavage of apurinic molecules on a novel support. Nucl. Acids Res. 24: 4632 ‐ 4638. | |
dc.identifier.citedreference | Lipshutz, R.J., Morris, D., Chee, M., Hubbell, E., Kozal, M.J., Shah, N., Shen, N., Yang, R., and Fodor, S.P.A. 1995. Using oligonucleotide probe arrays to access genetic diversity. BioTechniques 19: 442 ‐ 447. | |
dc.identifier.citedreference | Lyttle, M.H., Hudson, D., and Cook, R.M. 1996. A new universal linker for solid phase DNA synthesis. Nucl. Acids Res. 24: 2793 ‐ 2798. | |
dc.identifier.citedreference | Macdonald, P.M., Damha, M.J., Ganeshan, K., Braich, R., and Zabarylo, S.V. 1996. Phosphorus 31 solid state NMR characterization of oligonucleotides covalently bound to a solid support. Nucl. Acids Res. 24: 2868 ‐ 2876. | |
dc.identifier.citedreference | Macmillan, A.M. and Verdine, G.L. 1991. Engineering tethered DNA molecules by the convertible nucleoside approach. Tetrahedron 47: 2603 ‐ 2616. | |
dc.identifier.citedreference | Markiewicz, W.T. and Wyrzykiewicz, T.K. 1989. Universal solid supports for the synthesis of oligonucleotides with terminal 3′‐phosphates. Nucl. Acids Res. 17: 7149 ‐ 7158. | |
dc.identifier.citedreference | Markiewicz, W.T., Adrych‐Rozek, K., Markiewicz, M., Zebrowska, A., and Astriab, A. 1994. Synthesis of oligonucleotides permanently linked with solid supports for use as synthetic oligonucleotide combinatorial libraries. In Innovation and Perspectives in Solid Phase Synthesis: Peptides, Proteins and Nucleic Acids: Biological and Biomedical Applications ( R. Epton, ed.) pp. 339 ‐ 346. Mayflower Worldwide, Birmingham. | |
dc.identifier.citedreference | Maskos, U. and Southern, E.M. 1992. Oligonucleotide hybridizations on glass supports: A novel linker for oligonucleotide synthesis and hybridisation properties of oligonucleotides synthesized in situ. Nucl. Acids Res. 20: 1679 ‐ 1684. | |
dc.identifier.citedreference | Matson, R.S., Rampal, J.B., and Coassin, P.J. 1994. Biopolymer synthesis on polypropylene supports. Anal. Biochem. 217: 306 ‐ 310. | |
dc.identifier.citedreference | Matson, R.S., Rampal, J., Pentoney, S.L., Jr., Anderson, P.D., and Coassin, P. 1995. Biopolymer synthesis on polypropylene supports: Oligonucleotide arrays. Anal. Biochem. 224: 110 ‐ 116. | |
dc.identifier.citedreference | Matthes, H.W.D., Zenke, W.M., Grundström, T., Staub, A., Wintzerith, M., and Chambon, P. 1984. Simultaneous rapid chemical synthesis of over one hundred oligonucleotides on a microscale. EMBO J. 3: 801 ‐ 805. | |
dc.identifier.citedreference | McCollum, C. and Andrus, A. 1991. An optimized polystyrene support for rapid, efficient oligonucleotide synthesis. Tetrahedron Lett. 32: 4069 ‐ 4072. | |
dc.identifier.citedreference | McGall, G., Labadie, J., Brock, P., Wallraff, G., Nguyen, T., and Hinsberg, W. 1996. Light‐directed synthesis of high‐density oligonucleotide arrays using semiconductor photoresists. Proc. Natl. Acad. Sci. U.S.A. 93: 13555 ‐ 13560. | |
dc.identifier.citedreference | McGall, G.H., Barone, A.D., Diggelmann, M., Fodor, S.P.A., Gentalen, E., and Ngo, N. 1997. The efficiency of light‐directed synthesis of DNA arrays on glass substrates. J. Am. Chem. Soc. 119: 5081 ‐ 5090. | |
dc.identifier.citedreference | Merrifield, R.B. 1965. Automated synthesis of peptides. Science 150: 178 ‐ 185. | |
dc.identifier.citedreference | Milner, N., Mir, K.U., and Southern, E.M. 1997. Selecting effective antisense reagents on combinatorial oligonucleotide arrays. Nature Biotechnol. 15: 537 ‐ 541. | |
dc.identifier.citedreference | Montserrat, F.X., Grandas, A., and Pedroso, E. 1993. Predictable and reproducible yields in the anchoring of DMT‐nucleoside‐succinates to highly loaded aminoalkyl‐polystyrene. Nucleos. Nucleot. 12: 967 ‐ 971. | |
dc.identifier.citedreference | Montserrat, F.X., Grandas, A., Eritja, R., and Pedroso, E. 1994. Criteria for the economic large scale solid‐phase synthesis of oligonucleotides. Tetrahedron 50: 2617 ‐ 2622. | |
dc.identifier.citedreference | Mullah, B., Livak, K., Andrus, A., and Kenney, P. 1998. Efficient synthesis of double dye‐labeled oligodeoxyribonucleotide probes and their application in a real time PCR assay. Nucl. Acids Res. 26: 1026 ‐ 1031. | |
dc.identifier.citedreference | Nelson, P.S., Muthini, S., Vierra, M., Acosta, L., and Smith, T.H. 1997. Rainbow TM universal CPG: A versatile solid support for oligonucleotide synthesis. BioTechniques 22: 752 ‐ 756. | |
dc.identifier.citedreference | Ohsima, S.‐I., Morita, K., and Takaku, H. 1984. Solid‐phase synthesis of deoxyribooligonucleotides by the phosphotriester method employing a new polymer support. Chem. Pharm. Bull. 32: 4690 ‐ 4693. | |
dc.identifier.citedreference | Ott, J. and Eckstein, F. 1984. Filter disc supported oligonucleotide synthesis by the phosphite method. Nucl. Acids Res. 12: 9137 ‐ 9142. | |
dc.identifier.citedreference | Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P., and Fodor, S.P.A. 1994. Light‐generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. U.S.A. 91: 5022 ‐ 5026. | |
dc.identifier.citedreference | Pochet, S., Huyn‐Dinh, T., and Igolen, J. 1987. Synthesis of DNA fragments linked to a solid phase support. Tetrahedron 43: 3481 ‐ 3490. | |
dc.identifier.citedreference | Pon, R.T. 1993. Solid‐phase supports for oligonucleotide synthesis. In Protocols for Oligonucleotides and Analogs ( S. Agrawal, ed.) pp. 465 ‐ 496. Humana Press, Totowa, N.J. | |
dc.identifier.citedreference | Pon, R.T. and Yu, S. 1997a. Hydroquinone‐ O,O′‐diacetic acid (‘Q‐linker’) as a replacement for succinyl and oxalyl linker arms in solid phase oligonucleotide synthesis. Nucl. Acids Res. 25: 3629 ‐ 3635. | |
dc.identifier.citedreference | Pon, R.T. and Yu, S. 1997b. Rapid automated derivatization of solid‐phase supports for oligonucleotide synthesis using uronium or phosphonium coupling reagents. Tetrahedron Lett. 38: 3331 ‐ 3334. | |
dc.identifier.citedreference | Pon, R.T., Usman, N., and Ogilvie, K.K. 1988. Derivatization of controlled pore glass beads for solid phase oligonucleotide synthesis. BioTechniques 6: 768 ‐ 775. | |
dc.identifier.citedreference | Pon, R.T., Buck, G.A., Hager, K.M., Naeve, C.W., Niece, R.L., Robertson, M., and Smith, A.J. 1996. Multi‐facility survey of oligonucleotide synthesis and an examination of the performance of unpurified primers in automated DNA sequencing. BioTechniques 21: 680 ‐ 685. | |
dc.identifier.citedreference | Pon, R.T., Yu, S., Guo, Z., Yang, X., and Sanghvi, Y.S. 1998. Reusable solid‐phase supports for oligonucleotide synthesis using hydroquinone‐ O,O′ ‐diacetic acid (Q‐linker). Nucleos. Nucleot. In press. | |
dc.identifier.citedreference | Pon, R.T., Yu, S., Guo, Z., and Sanghvi, Y.S. 1999. Multiple oligodeoxyribonucleotide syntheses on a reusable solid‐phase CPG support via the hydroquinone‐ O,O′‐diacetic acid (Q‐linker) linker arm. Nucl. Acids Res. 27: 1531 ‐ 1538. | |
dc.identifier.citedreference | Porco, J.A., Deegan, T., Devonport, W., Gooding, O.W., Heisler, K., Labadie, J.W., Newcomb, B., Nguyen, C., van Eikeren, P., Wong, J., and Wright, P. 1997. Automated chemical synthesis: From resins to instruments. Mol. Divers. 2: 197 ‐ 206. | |
dc.identifier.citedreference | Potapov, V.K., Veiko, V.P., Korolev, O.N., and Shabarova, Z.A. 1979. Rapid synthesis of oligodeoxyribonucleotides on a grafted polymer support. Nucl. Acids Res. 6: 2041 ‐ 2057. | |
dc.identifier.citedreference | Rapp, W. 1996. PEG grafted polystyrene tentacle polymers: Physico‐chemical properties and application in chemical synthesis. In Combinatorial Peptide and Non‐Peptide Libraries: A Handbook ( G. Jung, ed.) pp. 425 ‐ 464. VCH, Weinheim. | |
dc.identifier.citedreference | Rapp, W.E. 1997. Macro beads as microreactors: New solid‐phase synthesis methodology. In Combinatorial Chemistry: Synthesis and Application, ( S.R. Wilson and A.W. Czarnik, eds.) pp. 65 ‐ 93. John Wiley & Sons, New York. | |
dc.identifier.citedreference | Reddy, M.P., Hanna, N.B., and Farooqui, F. 1994a. Fast cleavage and deprotection of oligonucleotides. Tetrahedron Lett. 35: 4311 ‐ 4314. | |
dc.identifier.citedreference | Reddy, M.P., Michael, M.A., Farooqui, F., and Girgis, S. 1994b. New and efficient solid support for the synthesis of nucleic acids. Tetrahedron Lett. 35: 5771 ‐ 5774. | |
dc.identifier.citedreference | Scheuerlarsen, C., Rosenbohm, C., Jorgensen, T.J.D., and Wengel, J. 1997. Introduction of a universal solid support for oligonucleotide synthesis. Nucleos. Nucleot. 16: 67 ‐ 80. | |
dc.identifier.citedreference | Schwartz, M.E., Breaker, R.R., Asteriadis, G.T., and Gough, G.R. 1995. A universal adapter for chemical synthesis of DNA or RNA on any single type of solid support. Tetrahedron Lett. 36: 27 ‐ 30. | |
dc.identifier.citedreference | Schwyzer, R., Felder, E., and Failli, P. 1984. 148. The CAMET and CASET links for the synthesis of protected oligopeptides and oligodeoxynucleotides on solid and soluble supports. Helv. Chim. Acta 67: 1316 ‐ 1327. | |
dc.identifier.citedreference | Scott, S., Hardy, P., Sheppard, R.C., and McLean, M.J. 1994. A universal support for oligonucleotide synthesis. In Innovation and Perspectives in Solid‐Phase Synthesis. Peptides, Proteins, and Nucleic Acids, Biological and Biomedical Applications ( R. Epton, ed.) pp. 115 ‐ 124. Mayflower Worldwide, Ltd., Birmingham, UK. | |
dc.identifier.citedreference | Seliger, H., Herold, A., Kotschi, U., Lyons, J., and Schmidt, G. 1987. Semi‐mechanized simultaneous synthesis of multiple oligonucleotide fragments. In Biophosphates and Their Analogues—Synthesis, Structure, Metabolism and Activity ( K.S. Bruzik and W.J. Stec, eds.) pp. 43 ‐ 58. Elsevier Science Publishers, New York. | |
dc.identifier.citedreference | Seliger, H., Kotschi, U., Scharpf, C., Martin, R., Eisenbeiss, F., Kinkel, J.N., and Unger, K.K. 1989. Polymer support synthesis XV. Behaviour of non‐porous surface coated silica gel microbeads in oligonucleotide synthesis. J. Chromatogr. 476: 49 ‐ 57. | |
dc.identifier.citedreference | Seliger, H., Bader, R., Birch‐Hirschfield, E., Földes‐Papp, Z., Hinz, M., and Scharpf, C. 1995. Surface reactive polymers for special applications in nucleic acid synthesis. Reactive Functional Polymers 26: 119 ‐ 126. | |
dc.identifier.citedreference | Seliger, H., Bader, R., Hinz, M., Rotte, B., Astriab, A., Markiewicz, M., and Markiewicz, W.T. 1997. Synthetic oligonucleotide combinatorial libraries—Tools for studying nucleic acid interactions. Nucleos. Nucleot. 16: 703 ‐ 710. | |
dc.identifier.citedreference | Sharma, P., Sharma, A.K., Malhotra, V.P., and Gupta, K.C. 1992. One pot general method for the derivatization of polymer support for oligonucleotide synthesis. Nucl. Acids Res. 20: 4100 ‐ 4100. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.